WD9914 General Purpose Interface Bus (GPIB) Controller

WESTERN DIGITAL

WD9914 General Purpose Interface Bus (GPIB) Controller

TABLE OF CONTENTS

	PAGE
Features	
Description	
Pin Designation	
Pin Description	
Architecture	. 3
Registers	
Interrupt Mask and Status Register 0	. 5
Interrupt Mask and Status Register 1	
Address Status Register	. 7
Address Register	. 7
Auxiliary Command Register	. 7
Description of Auxiliary Commands	
Software Reset (swrst)	. 8
Release DAC Holdoff (dacr)	. 9
Release RFD Holdoff (rhdf)	. 9
Holdoff On All Data (hdfa)	. 9
Holdoff On End (hdfe)	. 9
Set New Byte Available False (nbaf)	. 9
For the byte Available Faise (fibal)	. 9
Force Group Execute Trigger (fget)	
Return To Local (rtl)	
Force End Or Identify (feoi)	
Listen Only (lon)	
Talk Only (ton)	. 9
Go to Standby (gts)	. 9
Take Control Synchronously (tcs)	
Request Parallel Poll (rpp)	. 10
Take Control Asynchronously (tca)	
Send Interface Clear (sic)	. 10
Send Remote Enable (sre)	. 10
Request Control (rqc)	
Release Control (ric)	. 10
Disable All Interrupts (dai)	. 10
Pass Through Next Secondary (pts)	. 10
Set T1 Delay (std1)	. 10
Shadow Handshake (shdw)	. 10
Very Short T1 Delay (vstd1)	. 10
Request Service Bit 2 (rsv2)	. 10
Bus Status Register	. 11
Serial Poll Register	. 11
Command Pass Through Register	
Parallel Poll Register	
Data In Register	
Data Out Register	
Direct Memory Access	. 12
Terminal Assignments and Functions	
Transceiver Connections	
State Diagram Implementation	15
Auxiliary Commands	15
Acceptor Handshake	
Source Handshake	

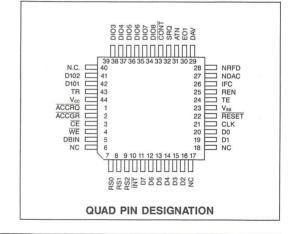
Talker And Listener Functions19Service Request Function21Remote/local Function23Parallel Poll Function24Remotely Configured Parallel Poll24Controller Function25Controller Self Addressing25Passing Control25System Controller25System Controller25System Controller25Package Diagrams34Ordering Information45

TABLES

1.	WD9914 Read Register	4
2.	WD9914 Write Registers	5
З.	Auxiliary Commands	8
	Software Reset Conditions	
5.	Auxiliary Command State Diagram Mnemonics	16
6.	Acceptor Handshake Mnemnonics	17
7.	Acceptor Handshake Message Outputs	17
8.	Source Handshake Mnemonics	18
9.	Source Handshake Message Outputs	19
	Talker and Listener Mnemonics	
11.	Talker Function Message Outputs	21
12.	Service Request Mnemonics	22
13.	Service Request Message Outputs	23
14.	Remote/Local Mnemonics	23
	Parallel Poll Mnemonics	
16.	Parallel Poll Message Outputs	25
17.	Controller Function Mnemonics	26
18.	Controller Function Message Outputs	27
19.	Multiline Interface Messages	30

FIGURES

1.	Simplified Block Diagram	4
	DMA Configuration	13
3.	Transceiver Connections	14
4.	WD9914 Auxiliary Command State Diagram	15
5.	WD9914 Acceptor Handshake State Diagram	16
	WD9914 Source Handshake State Diagram	
	WD9914 Listener State Diagram	
	WD9914 Talker State Diagram	
	Service Request Diagram	
	WD9914 Remote Local State Diagram	
	WD9914 Parallel Poll State Diagram	
	WD9914 Controller State Diagrams	
	Passing Control Between WD9914	
	IFC and REN Pins	
	Controller Taking Control	
16	Controller as a Listener (Going to Standby)	32
	Controller as a Talker (Going to Standby)	
18	Controller Parallel Polling	34
	WD9914 Clock Cycle Timing	
	WD9914 Read Cycle Timing	
	WD9914 Write Cycle Timing	
	WD9914 DMA Read Operation	
	WD9914 DMA Write Operation	
	WD9914 Source and Acceptor Handshake Timing	
	WD9914 Acceptor Handshake Timing "ATN" True	
	WD9914 Response to "ATN" and "EOI"	
	WD9914 Controller Timing	
time I a	The output of the second	-10


.

WD9914 General Purpose Interface Bus (GPIB) Controller

FEATURES

- Handles all IEEE-488 1975/78 functions
- Compatible with IEEE-488A 1980 supplement
- Talker and listener function (T, TE, L, LE)
- Automatic source and acceptor handshakes (SH, AH)
- Controller with pass control
- System controller capabilities
- Device trigger and device clear capabilities (DT, DC)
- · Optional automatically cleared 'request service bit'
- Parallel and serial poll facilities (PP)
- Remote/local function with local lockout (RL)
- Single or dual primary addressing
- Secondary address capabilities
- Direct interface to SN75160/161/162 bus transceivers with no additional logic
- Compatible with most microprocessors
- Direct memory access facilities
- Memory-mapped microprocessor interface
- Available in 40-pin DIP or 44-pin QUAD package
- Single +5V supply
- Compatible with TMS9914A features

ACCRO 40 □ Vcc ACCGR 2 39 TR DIO1 CE L 3 38 37 WE C 4 DI02 DBIN C 36 DIO3 5 ___ DIO4 6 RS0 [35 RS1 C 7 34 DIO5 DI06 RS2 C 33 8 INT 9 32 31 DIO8 30 CONT 10 D7 C D6 [11 SRQ D5 [12 29 13 28 D4 F 14 27 EOI D3 C D2 15 26 DAV D1 16 25 NRFD D0 C 17 24 NDAC 23 1FC CLK F 18 RESET 19 22 REN 20 21 TE VSSE **DIP PIN DESIGNATION**

DESCRIPTION

The WD9914 provides an interface between a microprocessor system and the General Purpose Interface Bus (GPIB) specified in the IEEE-488 1975/78 standards and the IEEE-488A 1980

supplement. The device is controlled and configured through 8-bit memory mapped registers and enables all aspects of the standards to be implemented, including talker, listener and controller.

WESTERN DIGITAL

PIN DESCRIPTION

	UMBER QUAD	SIGNAL NAME	I/O (TYPE)	DESCRIPTION
1	1	ACCRQ	O(p/p)	ACCESS REQUEST: This pin becomes active (low) to request a direct memory access.
2	2	ACCGR	I	ACCESS GRANTED: When received from the direct memory access control logic, this enables the byte onto the data bus. ACCGR must be high when not participating in DMA transfer.
3	3	CE	I	CHIP ENABLE: \overrightarrow{CE} low allows access of read and write registers. If \overrightarrow{CE} is high, D0-D7 are in high impedance unless \overrightarrow{ACCGR} is low.
4	4	WE	I	WRITE ENABLE: When active (low), indicates to the WD9914 that data are being written to one of its registers.
5	5	DBIN	I	DATA BUS IN: An active (high) state indicates to the WD9914 that a read is about to be carried out by the MPU.
6 7 8	7 8 9	RS0 RS1 RS2		REGISTER SELECT LINES: Determine which register is addressed by the MPU during a read or write operation.
9	10	INT	O(o/d) (no pullup)	INTERRUPT: Sent to the MPU to cause a branch to a service routine.
10-17	11-16 19-20	D7-D0	I/O(p/p)	Data transfer lines on the MPU side of the device.
18	21	CLK	I.	CLOCK Input: 500 kHz to 5 MHz. Need not be synchronous to system clock.
19	22	RESET*	1	INITIALIZES the WD9914 at power-on.
20	23	VSS		Ground reference voltage.
21	24	TE	O(p/p)	TALK ENABLE: Controls the direction of the transfer of the line transceivers. Logically, it is: (CACS + TACS + EIO.ATN.(CIDS + CADS). SWRST).
22	25	REN	I/O(o/d)	REMOTE ENABLE: Sent by system controller to select control either from the front panel or from the IEEE bus.
23	26	IFC	I/O(o/d)	INTERFACE CLEAR: Sent by the system controller to set the interface system into a known quiescent state. The system controller becomes the controller in charge.
24	27	NDAC	l/O(p/p)	NOT DATA ACCEPTED: handshake line. Accep- tor sets this false (high) when it has latched the data from the I/O lines.
25	28	NRFD	l/O(p/p)	NOT READY FOR DATA: handshake line. Sent by acceptor to indicate readiness for the next byte.
26	29	DAV	l/O(p/p)	DATA VALID: Handshake line controlled by source to show acceptors when valid data is present to the bus.
27	30	EOI	I/O(p/p)	END OR IDENTIFY: If ATN is false (high), this indicates the end of a message block. If ATN is true (low), the controller is requesting a parallel poll.

PIN DESCRIPTION (Continued)

PIN NU DIP	JMBER QUAD	SIGNAL NAME	I/O (TYPE)	DESCRIPTION
28	31	ATN	I/O(p/p)	ATTENTION: Sent by controller in charge. When true (low), interface commands are being sent over the DIO lines. When false (high), these lines carry data.
29	32	SRQ	I/O(p/p)	SERVICE REQUEST: Set true (low) by a device to indicate a need for service.
30	33	CONT	O(p/p)	Indicates if a device is controller in charge. It is used to control direction of SRQ and ATN in pass control systems. Logically, it is (CIDS + CADS).
31 32 33 34 35 36 37 38	34 35 36 37 38 39 41 42	DIO8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1	I/O(p/p) I/O(p/p) I/O(p/p) I/O(p/p) I/O(p/p) I/O(p/p) I/O(p/p) I/O(p/p)	DIO8 through DIO1 are the data input/output lines on the GPIB side. These pins connect to the IEEE-488 bus via non-inverting transceivers.
39	43	TR	O(p/p)	TRIGGER: Activated when the GET command is received over the interface or the fget command is given by the MPU.
40	44	VCC		Supply voltage (+ 5 V nominal).

(p/p) = push/pull output.

(o/d) = open drain output with internal pull up.

*The hardware RESET pin has the following effect on the WD9914:

- Serial and Parallel Poll registers cleared.

-All clear/set auxiliary commands cleared except "swrst."

- "swrst" auxiliary command set. This holds the WD9914 in known states.

ARCHITECTURE

The block diagram of the internal architecture of the WD9914 is given in Figure 1. As previously stated, there are 13 MPU accessible registers of which six are read and seven are write. These registers handle all communication between the IEEE-488 1975/78 bus and microprocessor.

Each register is accessed by putting the relevant address on lines RS0, RS1 and RS2 and performing a memory read ($\overline{WE} = 1$, DBIN = 1) or memory write ($\overline{WE} = 0$, DBIN = 0) operation. The register addresses and use of each bit is shown in Table 1 for the read registers and Table 2 for the write registers. A full description of each register is given in the following paragraphs.

Implementation of the functions described by the state diagrams of the IEEE-488 standard is carried out in the IEEE-488 state diagram block. Information is received from the IEEE bus and from the internal registers and is combined with the current status of the device (for example, Talker Active State, TACS) to produce the control signals to load registers or handle the handshake or bus management lines.

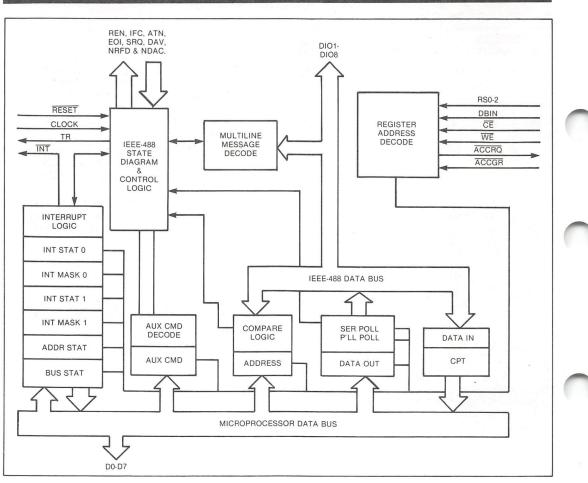


Figure 1. SIMPLIFIED BLOCK DIAGRAM

Table 1.	WD9914	READ	REGISTERS

AD	ADDRESS		The second second				BIT ASSI	GNMENT			
RS2 RS1 RS0		RS0	REGISTER NAME	DO	D1	D2	D3	D4	D5	D6	D7
0	0	0	Int Status 0	INTO	INT1	BI	BO	END	SPAS	RLC	MAC
0	0	1	Int Status 1	GET	ERR	UNC	APT	DCAS	MA	SRQ	IFC
0	1	0	Address Status	REM	LLO	ATN	LPAS	TPAS	LADS	TADS	ulpa
0	1	1	Bus Status	ATN	DAV	NDAC	NRFD	EOI	SRQ	IFC	REN
1	0	0	*						1. 65	s sala - A	
1	0	1	*						1.1.1	1.1	
1	1	0	Cmd Pass Thru	DIO8	DIO7	DIO6	DIO5	DIO4	DIO3	DIO2	DIO1
1	1	1	Data In	DIO8	DIO7	DIO6	DIO5	DIO4	DIO3	DIO2	DIO1

*The WD9914 host interface data lines will remain in the high impedance state when these register locations are addressed. An Address Switch register may therefore be included in the address space of the device at these locations.

Table 2. WD9914 WRITE REGISTERS

A	ADDRESS						BIT ASSI	GNMENT			
RS2 RS1 RS0		RS0	REGISTER NAME	D0	D1	D2	D3	D4	D5	D6	D7
0	0	0	Int Mask 0			BI	BO	END	SPAS	RLC	MAC
0	0	1	Int Mask 1	GET	ERR	UNC	APT	DCAS	MA	SRQ	IFC
0	1	0	*	xx	xx	XX	xx	xx	xx	xx	xx
0	1	1	Auxiliary Cmd	CS	XX	XX	f4	f3	f2	f1	fO
1	0	0	Address	edpa	dal	dat	A5	A4	A3	A2	A1
1	0	1	Serial Poll	S8 💉	rsvl	S6	S5	S4	S3	S2	S1
1	1	0	Parallel Poll	PP8	PP7	PP6	PP5	PP4	PP3	PP2	PP1
1	1	1	Data Out	DIO8	DIO7	DIO6	DIO5	DIO4	DIO3	DIO2	DIO1

*This address is not decoded by the WD9914. A write to this location will have no effect on the device, as if a write had not occurred.

REGISTERS

Interrupt Mask and Status Registers 0

The Interrupt Mask and Interrupt Status registers operate independently of each other. The status bits will always be set when the appropriate events occur, regardless of the state of the corresponding mask bit.

All interrupt bits (with the exception of INT0 and INT1, which are not storage bits) are edge triggered and are set when the appropriate condition becomes true. The storage bits are cleared immediately after the corresponding Interrupt Status register is read by the host MPU. If an interrupt condition becomes true during this read operation, then the event is stored. The corresponding bit is set when the read operation ends; hence no interrupts are lost. In addition to being cleared by a read operation, the B0 interrupt is also cleared by writing to the Data Out register, and the BI interrupt is cleared by reading the Data In register.

The interrupt status bits are cleared and held in the O condition while Software Reset ("swrst") is set.

The corresponding bit of the Interrupt Mask register must be set to a 1 if an interrupt status bit is to cause an external interrupt (INT Low) when it is set (i.e., INT = INT STATUS.INT MASK). The mask register is not cleared by "swrst" or the Hardware Reset pin (RESET) and will power on in a random state. It must, therefore, be written to by the host MPU before "swrst" is cleared to avoid extraneous interrupts.

The INTO and INT1 bits of the Interrupt Status register are not true status bits. Int1 will be true if there are any unmasked interrupt status bits set to a 1 in Interrupt Status register 1. INTO will be true if any of bits 2-7 of Interupt Status Register 0 are unmasked and set to a 1. If either INT1 or INTO is true, then the external interrupt pin (\overline{INT}) will be pulled low, provided that the Disable All Interrupts feature (dai) has not been set.

The individual bits of Interrupt Status and Interrupt Mask Register 0 are described in the following paragraphs. The conditions which set these bits, shown in parentheses, are given in terms of the state diagrams. Each bit is set on the rising edge of the condition shown.

xx	xx	BI	BO	END	SPAS	RLC	MAC	INT	MASK 0
INTO	INT1	BI	BO	END	SPAS	RLC	MAC	INT	STATUS 0
D0	D1	D2	D3	D4	D5	D6	D7		MPU BUS

INTERRUPT MASK/STATUS REGISTER 0

NOTE: A 0 masks and a 1 unmasks the bits in the interrupt mask registers.

- INT1 This will be a 1 when an unmasked status bit in Interrupt Status Register 1 is set to a 1.
- INTO This will be a 1 when any of bits 2-7 of Interrupt Status Register 0 is unmasked and set to a 1.
- BI Byte In. A data byte has been received in the Data In register. If the mask bit is not

set, then no interrupt is generated but a RFD holdoff will still occur before the next data byte is accepted. If the Shadow Handshake feature is used, then this status bit will not be set. This bit is cleared by reading the Data In register as well as after Interrupt Status Register 0 has been read. (Set On: ACDS1.LACS) BO Byte Out. This is set when the Data Out register is available to send a byte over the GPIB. This byte may be either a command if the device is a controller or data if the device is a talker. It is set when the device becomes an active talker or controller, but will not occur if the Data Out register has been loaded with a byte which has not been sent. Subsequently, it will occur after each byte has been sent and the WD9914 returns to SGNS. This bit is cleared by writing to the Data Out register as well as by reading Interrupt Status Register 0. (Set On: SGNS.CACS + SGNS.TASC.SHFS)

NOTE:

When a controller addresses itself as a talker and then goes to standby, there will be a momentary transition of the source handshake into SIDS before TACS becomes true and it reenters SGNS. Under these circumstances, the WD9914 is guaranteed to give a BO interrupt on reentering SGNS.

- END This indicates that a byte just received by a listener was the last byte in a string; that is, it was received with the EOI line true. It is set at the same time as the BI interrupt. (Set On: (ACDS1.LACS.EOI)
- SPAS This indicates that the WD9914 has requested service via rsv1 or rsv2 (in the Serial Poll register or Auxiliary Command register) and has been polled in a serial poll. It is set on the false transition of STRS when the serial poll status byte is sent. (Set On: STRS.SPAS.(APRS1 + APRS2)
- RLC Remote/Local Change. This is set by any transition between local and remote states

in the Remote/Local function. (Set On: (LOCS-REMS) + (REMS-LOCS) + (LWLS-RWLS) + (RWLS-LWLS)

MAC My Address Change. This indicates that a command has been received from the GPIB which has resulted in the addressed state of the WD9914 changing. It will not occur if secondary addressing is being used, nor indicate that the WD9914 has been readdressed on its other primary address. (Set On: ACDS1.(MTA.TADSUNT + OTA.TADS + MLA.LADS + UN.LADS)

Interrupt Mask and Status Registers 1

The operation of Interrupt Mask and Status Register 1 is similar to that of Interrupt Mask and Status Register 0 except that all bits are true storage bits. The status bits are cleared only following the register being read and by "swrst."

There is one distinct group of interrupts in this register: GET, UNC, APT, DCAS, MA. These are all set in response to commands received over the bus and if unmasked, a Data Accepted (DAC) holdoff will occur when the interrupt in question is set, it may be released with a "dacr" auxiliary command. This is further discussed in the Acceptor Handshake discussions.

The mask bit of the APT Interrupt is further used in the talker and listener functions. When the interrupt is unmasked, the talker and listener functions of the WD9914 implement the extended talker and extended listener functions of IEEE-488. Otherwise these functions implement the talker and listener functions of IEEE-488.

The individual bits of Interrupt Status and Interrupt Mask Register 1 are described below. The conditions which set these bits, shown in parentheses, are given in terms of the state diagrams.

GET	ERR	UNC	APT	DCAS	MA	SRQ	IFC	INT	MASK 1
GET	ERR	UNC	APT	DCAS	MA	SRQ	IFC	INT	STATUS 1
DO	D1	D2	D3	D4	D5	D6	D7	MPU	BUS

INTERRUPT MASK/STATUS REGISTER 1

GET This is set if a Group Execute Trigger command is received. A DAC holdoff occurs if the interrupt is unmasked. The TR pin becomes high when this command is received and persists high for the duration of a DAC holdoff if one occurs. If the interrupt is masked, the TR pin becomes high for approximately five clock cycles. (Set On: GET.LADS.ACDS1)

ERR Error. This is set if the source handshake becomes active and finds that the NDAC and NRFD lines are both high. This indicates that, for whatever reason, there are no acceptors on the bus. (Set On: SERS) UNC

Unrecognized Command. This is set if a command has been received which has no meaning to the WD9914. Unrecognized addressed commands will only cause this interrupt if the device is LADS, except for TCT, which will only interrupt in TADS. Secondary commands will only cause this interrupt if the "pts" auxiliary command has been set previously. A DAC holdoff will occur if this interrupt is unmasked which effectively enables the command pass through feature. Unrecognized commands may be inspected in the Command Pass Through register before this holdoff is released. (Set On: ACDS1. (UCG.LLO. SPE.

SPD.DCL + ACG.GET.GTL.SCD.TCT. LADS + TCT.TADS + SCG.pts)

- APT Address Pass Through, Unmasking this interrupt enables secondary addressing. It is set if a secondary command is received. provided that the last primary command received was a primary talk or listen address of the WD9914. A DAC holdoff will occur and the secondary address may be read from the Command Pass Through Register. The holdoff may be released by a "dacr" auxiliary command and the "cs" bit of the Auxiliary Command Register is used to indicate that a valid (cs = 1) or an invalid (cs = 0) secondary has been identified by the host MPU. (Set On: ACDS1. SCG.(LPAS + TPAS)
- DCAS Device Clear Active State. This is set when a device clear command (DCL) is received or when a selected device clear (SDC) is re-

Address Status Register

ceived with the WD9914 in LADS. This will cause a DAC holdoff if unmasked. (Set On: ACDS1.(DCL + SDC.LADS)

- SRQ Service Request. This is provided for the benefit of the controller, which should execute a serial poll in response to this interrupt. It is set when the SRQ line becomes true. (Set On: SRQ.(CIDS + CADS)
- MA My Address. This is set when the WD9914 recognizes its primary talk or listen address. A DAC holdoff will occur if this is unmasked. (Set On: (MLA + MTA).SPMS. aptmk)
- IFC Interface Clear. This is provided for the benefit of devices which are not the system controller. It is set when the IFC line becomes true and indicates that the WD9914 has been returned to an idle state. If the device is the system controller, then the IFC interrupt is not set. (Set On: IFCIN)

REM	LLO	ATN	LPAS	TPAS	LADS	TADS	ulpa]	
DO	D1	D2	D3	D4	D5	D6	D7	MPU	BUS

REM	The d	evice	is i	n the	remote	state.	
			100				

LLO Local lockout is in operation.

ATN The attention line is low (true) on the bus.

LPAS WD9914 is in the listener primary addressed state.

TPAS WD9914 is the talker primary addressed state.

LADS (or LACS) The device is addressed to listen.

TADS (or TACS) The device is addressed to talk.

ulpa This bit shows the LSB of the last address recognized by the WD9914.

Address Register

edpa	dal	dat	A5	A4	A3	A2	A1
D0	D1	D2	D3	D4	D5	D6	D7

edpa	Enable dual primary addressing mode.
dal	Disable listener function.
dat	Disable Talker function.
A5-A1	Primary address of the WD9914.

Bits A5-A1 of this register contain the primary address of the device (denoted AAAAA in Table 19). IEEE-488 1975/78 does not allow a device to be assigned the value 11111 for bits A5-A1. When "swrst" is true at power-up or if set by the host MPU, the WD9914 is held in an idle state. During this time the host MPU may load the primary address of the device into these bits. Often this will be read from an Address Switch Register.

The "edpa" bit is used to enable the dual addressing mode of the WD9914. It causes the LSB of the address to be ignored by the address comparator giving two consecutive primary addresses for the device. The address by which the WD9914 was selected is indicated by the "ulpa" bit of the Address Status Register.

The Address Register is not cleared "swrst" or hardware reset.

Auxiliary Command Register

CS	xx	xx	F4	F3	F2	F1	F0
D0	D1	D2	D3	D4	D5	D6	D7
f4-f0 cs				see Table 3 nere applica			

Auxiliary commands are used to enable and disable most of the selectable features of the WD9914 and to initiate many of the actions of the device. The desired feature is selected by writing a byte to this register with the appropriate value in bits f4-f0. These values are given in Table 3.

The c/s bit is used in most cases when the feature selected by f4-f0 is of the clear/set type. The feature is enabled if c/s = '1' and disabled if c/s = '0'. The holdoff on all data (hdfa) feature is an example of such a feature. Other auxiliary commands initiate an action of the WD9914, such as release RFD Holdoff (rhdf). In most cases, the c/s bit is unused and ignored by these commands.

All the clear/set auxiliary commands are cleared by the hardware RESET pin except "swrst," which is set true by RESET.

The force group execute trigger (fget) and return to local (rtl) auxiliary commands have a clear/set mode of operation and a pulsed mode of operation. They behave as normal clear/set features, but if they are written with c/s = '0' when they have not been previously set, then they will pulse true. Using the "fget" command in this manner will produce a pulse of approximately 1 μ s at the TR pin (with a 5 MHz clock). The "rtl" command used in this way will cause a return to one of the local states (assuming local lockout is not in force), but the WD9914 may reenter the remote state next time the listen address occurs.

c/s	f4	f3	f2	f1	fO	MNEMONIC	FEATURES
0/1	0	0	0	0	0	swrst	Software reset
0/1	0	0	0	0	1	dacr	Release DAC holdoff
na	0	0	0	1	0	rhdf	Release RFD holdoff
0/1	0	0	0	1	1	hdfa	Holdoff on all data
0/1	0	0	1	0	0	hdfe	Holdoff on end
na	0	0	1	0	1	nbaf	New byte available false
0/1	0	0	1	1	0	fget	Force group execute trigger
0/1	0	0	1	1	1	rti	Return to local
na	0	1	0	0	0	feoi	Send EOI with next byte
0/1	0	1	0	0	1	lon	Listen only
0/1	0	1	0	1	0	ton	Talk only
na	0	1	0	1	1	gts	Go to standby
na	0	1	1	0	0	tca	Take control asynchronously
na	0	1	1	0	1	tcs	Take control synchronously
0/1	0	1	1	1	0	rpp	Request parallel poll
0/1	0	1	1	1	1	sic	Send interface clear
0/1	1	0	0	0	0	sre	Send remote enable
na	1	0	0	0	1	rqc	Request control
na	1	0	0	1	0	rlc	Release control
0/1	1	0	0	1	1	dai	Disable all interrupts
na	1	0	1	0	0	pts	Pass through next secondary
0/1	1	0	1	0	1	std1	Set T1 delay
0/1	1	0	1	1	0	shdw	Shadow handshake
0/1	1	0	1	1	1	vstd1	Very short T1 delay
0/1	1	1	0	0	0	rsv2	Request Service Bit 2

Table 3. AUXILIARY COMMANDS

DESCRIPTION OF AUXILIARY COMMANDS

Software Reset (swrst) 0/1xx00000

Setting this command causes the WD9914 to be returned to a known idle state during which it will not take part in any activity on the GPIB. This auxiliary command is set by the power-on RESET and the chip should be configured while "swrst" is set. Configuration should include writing the address of the device into the Address register, writing mask values into the Interrupt Mask registers and selecting the desired features in the Auxiliary Command register and Address register. After this, "swrst" may be cleared at which point the device becomes logically existent on the GPIB. The Serial Poll register and Parallel Poll registers may also be written in this period, but this is not necessary if there is no status to report as both of these are cleared by the power-on RESET pin. Table 4 lists the various states and other conditions forced by "swrst."

Table 4. SOFTWARE RESET CONDITIONS

MNEMONIC	DESCRIPTION
SIDS	Source idle state
AIDS	Acceptor idle state
TIDS	Talker idle state
TPAS	Talker primary idle state
LIDS	Listener idle state
LPAS	Listener primary state
NPRS	Negative poll response state
LOCS	Local state
CIDS	Controller idle state
SPIS	Serial poll idle state
PPSS	Parallel poll standby state
ADHS	DAC holdoff state
AEHS	RFD holdoff on end state
SHFS	Source holdoff state
ENIS	END idle state

NOTES: 1. See Section 3 for definition of above.

 All interrupt status bits are held in a 0 state, but interrupt mask bits are not affected.

Release DAC Holdoff (dacr)0/1xx00001

The Data Accepted (DAC) holdoff allows time for the host microprocessor to respond to unrecognized commands, secondary addresses, and device trigger or device clear commands. The holdoff is released by the MPU when the required action has been taken. Normally the command is loaded with the clear/set bit at zero; however, when used with the address pass through feature c/s is set to one if the secondard address was valid, or to zero if invalid see APT interrupt.

Release RFD Holdoff (rhdf)naxx00010

Any Ready For Data (RFD) holdoff caused by a 'hdfa' or 'hdfe' is released.

Holdoff on All Data (hdfa)0/1xx00011

A Ready For Data (RFD) holdoff is caused on every data byte until the command is loaded with c/s set to zero. The handshake must be completed after each byte has been received by the MPU using the "rhdf" command.

Holdoff on End (hdfe)0/1xx00100

An RFD holdoff will occur when an end of data string message (EOI true with ATN false) is received over the interface. This holdoff must be released using "rhdf."

Set New Byte Available False (nbaf)naxx00101

If a talker is interrupted before the byte just stored in the Data Out register is sent over the interface, this byte will normally be transmitted as soon as the ATN line returns to the false state. If, as a result of the interrupt, this byte is no longer required, its transmission may be suppressed using the "nbaf" command.

Force Group Execute Trigger (fget)0/1xx00110

The state of the TR output from the WD9914 is affected when this command is executed. If the c/s bit is zero, the line is pulsed high for approximately 5 clock cycles (1 μ s at 5 MHz). If c/s is one, the TR line goes high until "fget" is sent with c/s equal to zero. No interrupts or handshakes are initiated.

Return to Local (rtl)0/1xx00111

Provided the local lockout (LLO) has not been enabled, the remote/local status bit is reset, and an interrupt is generated (if enabled to inform the host microprocessor that it should respond to the front panel controls). If the c/s bit is set to one, the "rtl" command must be cleared (c/s = 0) before the device is able to return to remote control. If c/s is set to zero, the device may return to remote without first clearing "rtl."

Force End or Identify (feoi)naxx01000

This command causes the EOI message to be sent with the next data byte. The EOI line is then reset.

Listen Only (Ion)0/1xx01001

The listener state is activated until the command is set with c/s set to 0, or until deactivated by a bus command.

Talk Only (ton)0/1xx01010

The talker state is activated until the command is set with c/s set to 0, or until deactivated by a bus command.

NOTE:

"ton" and "lon" are included for use in systems without a controller. However, where the WD9914 is being used as a controller, it utilizes the "lon" and "ton" functions to set itself up as a listener or talker, respectively. Care must therefore be taken to ensure these functions are reset if sending UNL or OTA.

Go to Standby (gts)naxx01011

Issued by the controller in charge to set the ATN line false.

Take Control Synchronously (tcs)naxx01101

Control is again taken by the controller in charge, and ATN is asserted. If the controller is not a true listener, the shadow handshake command must be used to monitor the handshake lines so that the WD9914 is synchronous with the talker/listeners and only sends ATN true at the end of byte transfer. This ensures that no data is lost or corrupted.

Request Parallel Poll (rpp)0/1xx01110

This is executed by the controller in charge to send the parallel poll command over the interface. (The WD9914 must be in the Controller Active State so that the Attention line is asserted). The poll is completed by reading the Command Pass Through register to obtain the status bits, then sending 'rpp' with the cs bit at zero.

Take Control Asynchronously (tca)naxx01100

This command is used by the controller in charge to set the attention line true and to gain control of the interface. The command is executed immediately and data corruption or loss may occur if a talker/ listener is in the process of transferring a data byte.

Send Interface clear (sic)0/1xx01111

The IFC line is set true when this command is sent with cs set to one. This must only be sent by the system controller and should be reset (cs = 0) after the IEEE minimum time for IFC has elapsed (100 μ s). The system controller is put into the controller active state.

Send Remote Enable (sre)0/1xx10000

Issued by the system controller to set the REN line true and send the remote enable message over the interface, REN is set false by sending "sre" with cs at zero.

Request Control (rqc)naxx10001

When the TCT command has been recognized via the unidentified command pass through, this command is sent by the MPU. The WD9914 waits for the ATN line to go false and then enters the controller active state (CACS).

Release Control (ric)naxx10010

This command is used after TCT has been sent and handshake completed to release the ATN line and pass control to another device.

Disable All Interrupts (dai)0/1xx10011

The $\overline{\rm INT}$ line is disabled, but the interrupt registers and any holdoffs selected are not affected.

Pass Through Next Secondary (pts)naxx10100

This feature may be used to carry out a remote configuration of a parallel poll. The parallel poll configure command (PPC) is passed through the WD9914 as an unrecognized addressed command and is identified by the MPU. The "pts" command is loaded, and the next byte received by the WD9914 is passed through via the Command Pass Through register. This would be the parallel poll enable (PPE), which is read by the microprocessor.

Set T1 Delay (std1)1xx10101

The T1 delay time can be set to six clock cycles (1.2 μ s at 5 MHz) if this command is sent with the cs bit at one. The T1 delay time is 11 clock cycles (2.2 μ s at 5 MHz) following a power-on reset, or if the command is sent with cs set to zero.

Shadow Handshake (shdw)0/1xx10110

This feature enables the controller in charge to carry out the listener handshake without participating in a data transfer. The Data Accepted line (DAC) is pulled true a maximum of three clock cycles after Data Valid (DAV) is received, and Not Ready For Data (NRFD) is allowed to go false as soon as DAV is removed.

The shadow handshake function allows the "tcs" command to be synchronized with the Acceptor Not Ready State (ANRS) so that ATN can be re-asserted without causing the loss or corruption of data byte. The END interrupt can also be received and causes a RFD holdoff to be generated.

Very Short T1 Delay (vstd1)0/1xx10111

If this feature is enabled, the GPIB setting time (T1) will be reduced to three clock cycles (600 ns at 5 MHz) on the second and subsequent data bytes when ATN is false. Otherwise, the GPIB setting time is determined by the "std1" feature.

Request Service Bit 2 (rsv2)0/1xx11000

The "rsv2" bit performs the same function as the "rsv1" bit, but provides a means of requesting service which is independent of the Serial Poll register.

This allows minor updates to be made to the Serial Poll register without affecting the state of the request service.

In addition, "rsv2" is cleared when the serial poll status byte is sent to the controller during a serial poll. It is therefore used in situations where a service request is simply a request from an instrument for the controller to poll its status. As soon as this happens, "rsv2" is cleared since the reason for requesting service has been satisfied. This eliminates the burden of clearing the bit from the host MPU, but also guarantees that "rsv2" is cleared before another serial poll can occur. If this were not so, there would be a possibility of a second status byte being sent with the RQS message true, which could result in confusion for the controller. ("rsv2" is cleared on: SPAS.(APRS1 + APRS2).STRS).

Bus Status Register

ATN	DAV	NDAC	NRFD	EOI	SRQ	IFC	REN]
DO	D1	D2	D3	D4	D5	D6	D7	MPU

The host MPU may examine the status of the GPIB management lines at the time of reading.

The IFC bit of this register does not indicate a true value if the device is a system controller using the

GPIB, and the controller typically responds by setting

up a serial poll to obtain the status of all instruments on the bus that may require service. When the

WD9914 is addressed to send its status byte, SRQ is

set false, and the status byte is sent with the RQS

message true on DIO7. the "rsv1" bit must then be

cleared and set true again if service is to be

requested a second time. The SPAS interrupt is set

The "rev1" bit is also cleared by the hardware reset pin

but not by "swrst." It is not double-buffered, but the service request function comprehends changes in

the state of "rsv1" while the device is in SPAS. The

Serial Poll register may therefore be written to any

immediately following the status byte being sent.

'sic' auxiliary command.

BUS

Serial Poll Register

S8	rsv1	S6	S5	S4	S3	S2	S1	, ,
DIO8	DIO7	DIO6	DIO5	DIO4	DIO3	DIO2	DIO1	GPIB
DO	D1	D2	D3	D4	D5	D6	D7	MPU BUS

S8, S6-S0 Device status

rsv1 Request service bit 1

Bits S8, S6-S1 of this register are sent out over the GPIB when the device is addressed during a serial poll. They are cleared by a hardware reset but not by "swrst" and may, therefore, be set up during configuration of the chip. These bits are fully double buffered: and if the register is written to while the device is addressed during a serial poll (serial poll active state, SPAS), the value written is saved, and these bits are updated when SPAS is terminated.

The "rsv1" provides an input to the service request function of the WD9914, and is used to instruct this request that the controller service the device. When "rsv1" is set true, the SRQ line is pulled true on the

Com

ommand	Pass Thro	ugh Regist	er					
DIO8	DIO7	DIO6	DIO5	DIO4	DIO3	DIO2	DIO1	GPIB
DO	D1	D2	D3	D4	D5	D6	D7	MPU BUS

time.

This provides a means of directly inspecting the GPIB data lines (DIO(8-1)). It has no storage and should only be used when the data lines are known to be in a steady state, such as during a DAC holdoff or in CPWS during a parallel poll. It is used to read

unrecognized commands and secondaries following a UNC interrupt or to read secondary addresses following an APT interrupt. In addition, an active controller uses this register to read the results of a parallel poll at least 2μ s after setting the "rpp" auxiliary command.

Parallel Poll Register

PP8	PP7	PP6	PP5	PP4	PP3	PP2	PP1	
DIO8	DIO7	DIO6	DIO5	DIO4	DIO3	DIO2	DIO1	GPIB
DO	D1	D2	D3	D4	D5	D6	D7	MPU BUS

When a controller initiates a parallel poll, the contents of this register are presented to the GPIB data lines. If all bits of the register are cleared, then none of the lines (DIO(8-1) will be pulled low during a parallel poll, which corresponds to the Parallel Poll Idle State (PPIS) or IEEE-488. If it is desired to participate in a parallel poll, then the bit corresponding to the desired parallel poll response is set to a 1.

The Parallel Poll Register is fully double buffered. If it is written to during a parallel poll, the new value is

held until the parallel poll ends, at which point the register is updated. This permits the host MPU to update the parallel poll response completely asynchronously to the GPIB.

If this register is cleared by the hardware RESET pin but not by "swrst," it may be loaded while the chip is being configured with "swrst" set.

Data In Register

DIO8			DI05	DIO4	DIO3		DIO1	GPIB
DO	D1	D2	D3	D4	D5	D6	D7	MPU BUS

This register is used to hold data received by the WD9914 when it is a listener. It is loaded during Accept Data State (ACDS1) and, following this, an RFD holdoff will occur. This will normally be released when the byte is read by the host MPU; but if the Holdoff On All Data (hdfa) feature is selected, this holdoff must be released by the "rhdf" auxiliary command.

If the Holdoff On End (hdfe) feature is selected, the RFD holdoff will be released by reading the Data In register. But if the EOI line is true when the byte is received, reading the data byte will not release the holdoff and "rhdf" must be used.

S

As the Data In Register is loaded, the BI interrupt is set. The END interrupt is set simultaneously if the byte is accompanied by a true EOI line.

Data Out Register

DIO8	DIO7	DIO6	DIO5	DIO4	DIO3	DIO2	DIO1	GPIB
D0	D1	D2	D3	D4	D5	D6	D7	MPU BUS

The Data Out register is used by a controller or talker for sending interface messages and device dependent messages. When the WD9914 enters the Talker Active State (TACS) or the Controller Active State (CASC), the contents of the Data Out register are presented to the GPIB data lines (DIO(8-1)), and the byte is sent over the bus under the control of the Source Handshake. Each time a byte is written, the source handshake is enabled, and the byte is sent. If the handshake is interrupted before the type can be sent, then it will be sent next time the Source Handshake becomes active unless a new byte available false (nbaf) auxiliary command is written. This has the effect of clearing an unsent byte from the Data Out register, and although the register itself is not cleared, the WD9914 behaves as if it had not been loaded.

Each time the source handshake becomes active and there is no unsent byte in the Data Out register, a BO interrupt will occur informing the host MPU that the Data Out register is available for use.

The Data In register and Data Out register operate independently. The Data Out register is not double buffered, and its contents are output directly to the data lines of the GPIB.

DIRECT MEMORY ACCESS

The WD9914 can operate in DMA using the ACCRQ (DMA request) and ACCGR (DMA grant) DMA handshake lines. The operation is automatic within the WD9914 and needs no "mpu" configuration.

The \overline{ACCRQ} signal is set by (BO. \overline{CACS} + B1); and can, therefore, not be used by a controller while ATN is asserted. It is reset by "swrst," reading data in register, writing to the data out register and \overline{ACCGR} . It is not cleared by reading interrupt status register 0.

If using DMA, the internal CE and addressing is disabled by the \overline{ACCGR} signal going low and \overline{ACCGR} will automatically address either the Data In register (DBIN = 0) or the Data Out register (DBIN = 1).

NOTE:

The sense of DBIN is inverted for DMA operation.

At the end of a DMA read from memory sequence, the ACCRQ will be left low (also BO bit set). It may be necessary for the "mpu" to clear this in some circumstances; e.g., starting DMA write to memory sequence.

In DMA it is recommended that the MA interrupt be unmasked to prevent errors due to interrupted data streams.

If DMA is not being utilized, the ACCGR signal must be held high. In this case, the ACCRQ signal can be used as a separate interrupt line for BO and BI. This allows faster "mpu" transfers to take place as it is not necessary to read the interrupt register to find the cause of the interrupt. Figure 2 shows a typical DMA configuration.

TERMINAL ASSIGNMENTS AND FUNCTIONS

The IEEE-488 standard uses the negative logic convention for the GPIB lines. The FALSE state (0) is represented by a high voltage (>2.0 V); the TRUE state (1) is represented by a low voltage (>0.8 V). The GPIB terminations of the WD9914 are in agreement with this convention. For example, if Data Valid is true (1), the DAV line is pulled low by the device. These terminations are connected to the bus via noninverting buffers to obtain the correct signal polarity.

Note that the terminations on the microprocessor side of the device are in positive logic (true state (1) = high voltage : false state (0) = low voltage). This is in agreement with the logic convention used by most microprocessors. Thus if:

MSB)					- 14	D7(L
0 1	1	0	1	0	0	1

is written into the Data Out register, it will appear as:

DIO8(N	ISB)					DIC	1(LSB)
HIGH LOW LOW HIGH LOW HIGH HIGH LOW							
on the IEEE-488 D10 lines.							

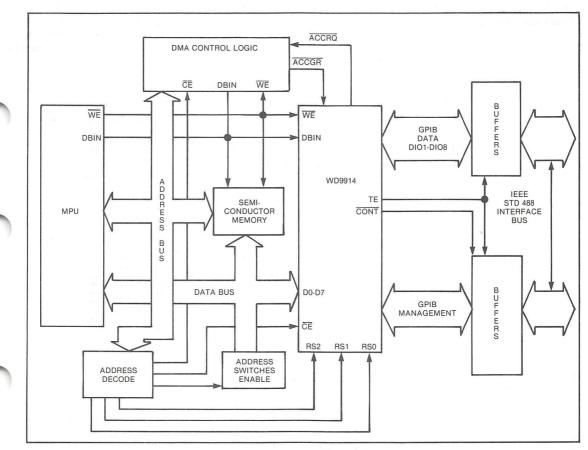
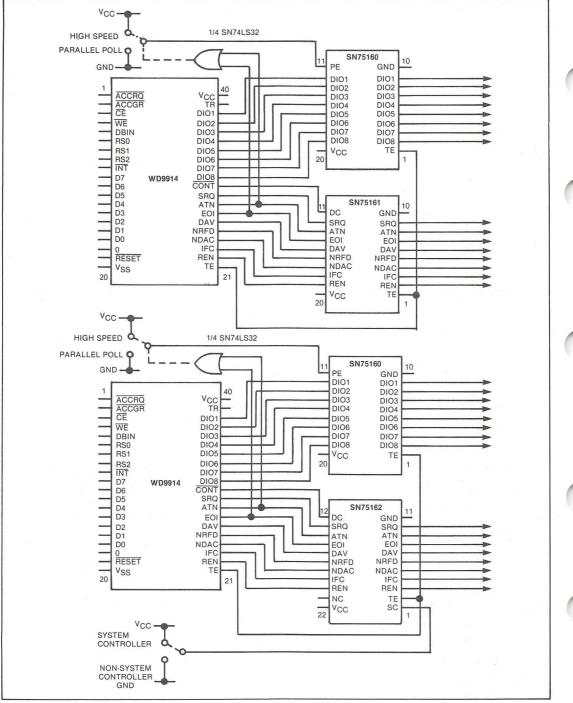


Figure 2. DMA CONFIGURATION

TRANSCEIVER CONNECTIONS

There are three linear transceivers designed to work with the WD9914: The SN75160, SN75161, and SN75162. Figure 3 shows the possible transceiver connections. Note that there is a corresponding pinout between the WD9914 and the transceivers. This allows the whole GPIB interface to be laid out in a very small area of printed circuit board.


The SN75160 is a 20-pin device used to buffer the IEEE-488 data lines (DIO(8-1)) in all applications. The direction of the buffers is controlled by the Talk Enable (TE) output of WD9914. This active high signal becomes true whenever there is an interface function of the WD9914 not sending the NUL message on DIO(8-1); that is, when the device is in TACS, CACS, SPAS, or PPAS. The Pull-Up Enable (PE) input of the SN75160 is an active high input which selects whether the 'DIO(8-1)' lines are driven by open collector or push/pull buffers. A push/pull buffer is required if faster data rates are required and the "stdl" and/or the

"vstdl" features are used. Open collectors must be used if parallel polling is being used in a particular GPIB environment. If only one of these features is desired, the PE input may be hardwired; otherwise it must be derived from ATN and EIO, as shown in Figure 3.

The SN75161 is a 20-pin device used to buffer the IEEE-488 management lines. It may be used for a talker/listener device or for a controller which does not pass control. The direction of the handshake line buffers NRFD, NDAC, DAV are again controlled by the TE signal. However, the SRQ, ATN, REN, and IFC buffers are controlled by the DC input of the SN75161, which connects to the Controller Active (CONT) output of the WD9914. CONT becomes low whenever the WD9914 is an active controller; that is, when it is not in CIDS or CADS. The SN75161 also includes the logic necessary to control the direction of the EOI buffer. This is dependent on the TE signal when ATN is false (high), and the DC signal when ATN is true (low).

The SN75162 is a 22-pin device which may be used to buffer the IEEE-488 management lines in all appli-

cations including devices which pass control. The SN75162 has a separate pin to control the direction

denter dan undenter dan dan dan

of the REN and IFC buffers, but is otherwise identical to the SN75161 in all other respects. This input is the System Controller input (SC) which may be hardwired or switchable to determine whether or not the instrument in question is a system controller or not. Note that a device which has its buffers configured as a non-system controller should never use the "sic" and "sre" auxiliary commands.

STATE DIAGRAM IMPLEMENTATION

This section presents the state diagrams for the WD9914.

Where equivalent, the names of WD9914 states are the same as those of IEEE-488. In some cases, IEEE-488 states have been divided, for example, ACDS of the IEEE-488 has been split into ACDS1 and ACDS2. The convention of lower case characters for local messages and upper case for remote messages and interface states is retained.

State diagrams with remote message outputs are supplemented with tables. T is used to represent a true output and F a false output. Parentheses denote a passive output; otherwise, it is active. The outputs shown are the values presented to the bus and assume the use of the SN75160 and SN75161 or SN75162 transceivers or their logical equivalents. The symbol (NUL) associated with DIO(1-8) indicates that each of these lines is sent passive false by the function in question.

NOTE:

An arrow into a state with no state as its origin represents a transition from every other state on the diagram. Note, however, that this does not imply that all exit conditions from the destination state are overridden. If such an entry condition is true and, simultaneously, an exit condition is true then this represents an illegal situation and should be avoided. Such situations will not occur in normal operation of the device.

No maximum timings are discussed. The WD9914

with its recommended transceivers meets all IEE-488 maximum timing requirements. If the WD9914 is used with other transceivers, then it must be ensured that these requirements are still met.

AUXILIARY COMMANDS

There are two basic types of commands implemented in the auxiliary command register: immediate execute and clear/set.

The clear/set commands are used to enable and disable the various features of the WD9914. The particular feature is selected by the code on f0-f4, and it is set or cleared according to the value on the cs bit. For the purposes of the state diagrams, the mnemonic of a clear/set command simply represents its current state.

The immediate execute auxiliary commands remain active for the duration of a strobe signal after the Auxiliary Command register has been written to. This is represented in the form of a state diagram in Figure 4. Note that writes to the Auxiliary Command register must be spaced by at least five clock cycles. For the purposes of the remaining state diagrams, the immediate execute commands are represented as the mnemonic gated by the auxiliary command strobe state (AXSS).

The clear/set bit of the Auxiliary Command register is used by several of the immediate execute commands. For example, "dacr" uses it to differentiate between valid and not valid secondary addresses when releasing a DAC holdoff on a secondary address. The "lon" and "ton" auxiliary commands are also considered immediate execute.

The "fget" and "rtl" auxiliary commands are both immediate execute and clear/set. They may be cleared or set in the normal way; but if they are cleared when they are already in the false state, they will pulse true for the duration of AXSS. In the following state diagrams, however, these are simply included in their clear/set form.

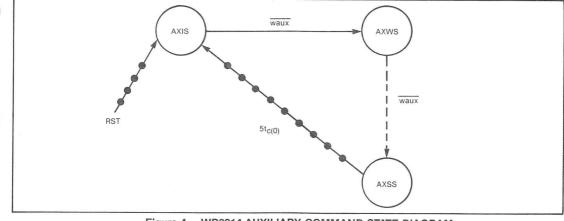


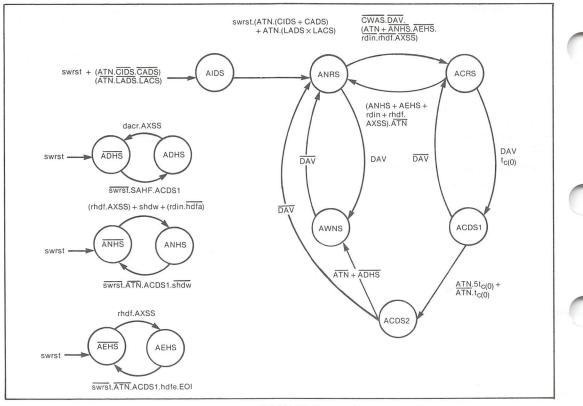
Figure 4. WD9914 AUXILIARY COMMAND STATE DIAGRAM

Table 5. AUXILIARY COMMAND STATE DIAGRAM MNEMONICS

		MESSAGES	· · · · ·	_	STATES
waux	=	write to auxiliary command register	AXIS	=	auxiliary command register idle state
tc(0)	=	clock cycle time	AXWS	=	auxiliary command write state
-(-/			AXSS	=	auxiliary command strobe state

ACCEPTOR HANDSHAKE

The WD9914 acceptor handshake is shown in Figure 5. The main variation from IEEE-488 to note is that the device remains in AIDS while the controller function is in CACS. The WD9914, therefore, does not monitor the commands which it sends over the bus and this places some restrictions on the user.


The accept data state of IEEE-488 (ACDS) is divided into two states. The first, (ACDS1) is used to strobe data into the Data In register or to sequence the decoding of commands from the bus. All interrupts generated by the acceptor handshake (GET, MA, MAC, DCAS, APT, UCG, BI, and END) are generated by this state. The second (ACDS2) is used as a holding state where the device will remain in the event of a DAC holdoff.

Certain of the commands will cause interrupts in

ACDS1, and if the interrupts are unmasked, a DAC holdoff will occur. The interrupts concerned are GET, MA, DCAS, UCG, and APT. This is represented in the state diagram by the signal SAHF, which becomes true when one of the above interrupts is set if it is unmasked. It persists for the duration of ACDS1. This event is stored by causing the ADHS to become active, which inhibits the transition from ACDS2 to AWNS. ADHS is cleared by "dacr." Table 19 shows the response of the WD9914 to the various bus commands.

If a GET command is received in ACDS1, then the TR pin will be set high. This high condition persists throughout ACDS1 and ACDS2, which means that if a DAC holdoff occurs, the TR pin will remain high until the holdoff is released by a "dacr" auxiliary command.

Two additional state diagrams are included to record

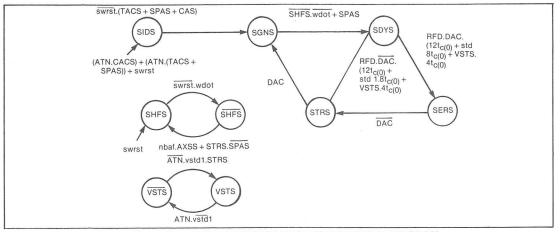
the type of data received in ACDS1 when ATN is false. ANHS indicates that a data byte has been received and that an RFD holdoff should be caused before the next data byte is accepted. The holdoff may be released by reading the Data In register unless the "hdfa" feature is enabled, in which case "rhdf" must be used. AEHS shows that the last data byte was accepted with the EOI message true and the "hdfe" feature set. This will cause an RFD holdoff which can only be released by "rhdf."

		MESSAGES			STATES
swrst	=	software reset	AIDS	=	acceptor idle state
dacr	=	DAC release	ANRS	=	acceptor not ready state
rhdf	=	release RFD holdoff	ACRS	=	acceptor ready state
shdw	= 1	shadow handshake	ACDS1	=	accept data state 1
rdin	=	read data in register	ACDS2	=	accept data state 2
hdfe	=	enable RFD holdoff after END messages received	AWNS	=	acceptor wait for new cycle state
hdfa	=	enable RFD holdoff on all data	ADHS	=	accept data holdoff state
ATN	=	attention	ANHS	=	acceptor not ready holdoff state
DAV	=	data valid	AEHS	=	acceptor not ready holdoff after 'END'
EOI	=	end or identify state	CWAS	=	controller wait for ANRS state (control- ler function)
RFD	=	ready for data	AXSS	=	auxiliary command strobe state (auxili- ary command register)
DAC	=	data accepted	LADS	=	listener addressed state (listener func- tion)
SAHF	=	set accept data holdoff state	LACS	=	listener active state (listener function)
tc(0)	=	clock cycle time	CIDS	=	controller idle state (controller function)
			CADS	=	controller addressed state (controller function)

Table 7. ACCEPTOR HANDSHAKE MESSAGE OUTPUTS

		REMOTE MES	SAGES SENT		
	STATE	RFD	DAC		OTHER ACTIONS
	AIDS	(T)	(T)		
	ANRS	F	F		
	ACRS	(T)	F		
	ACDS1	F	F	ATN False:	 data entered into Data In register BI interrupt generated end interrupt generated if EOI is true.
)				ATN true:	 commands decoded command related interrupts set "sahf" set if command requires a DAC holdoff TR pin set true if GET message is received "pts" feature cleared after UNC interrupt set
	ACDS2	F	F	TR	 pin set true if GET command was received in ACDS1
	AWNS	F	(T)		

at the state of the state of the state


SOURCE HANDSHAKE

The WD9914 source handshake state diagram is shown in Figure 6. IEEE-488 states SIWS and SWNS have been removed. These record the false then true transition of "nba" (new byte available) as the old data byte is removed and a new data byte is made ready. Instead the WD9914 uses a separate state (SHFS) to record the availability of a data byte in the Data Out register. This state is exited when a byte is written to the Data Out register, which enables the transition from SGNS to SDYS and the subsequent transmission of the byte. The SHFS is reentered as the byte is sent in STRS; but if the handshake is interrupted before this, then the fact that the byte has not been sent is recorded until the source handshake again becomes active. If, however, the byte in the Data Out register is to be disregarded, then "nbaf" may be used to return the device to SHFS.

The status byte in the Serial Poll register is continually available. The transition from SGNS to SDYS is not dependent on SHFS during a serial poll, that is, while SPAS is active. By separately recording the availability of a byte in the Data Out register, a talker sending data may be interrupted for a serial poll without risk of a byte being lost.

The additional state SERS is included to detect an error condition on the bus. This will be entered when the source handshake tries to send a byte, but finds both the NRFD and NDAC lines false at the same time. This condition will normally indicate for a controller that there are no devices powered up on the bus, or for a talker that there are no devices addressed to listen on the bus.

The state VSTS will be entered after the first data byte of a talker has been sent if the "vstdl" feature is enabled. This enables a very short bus settling time (4t_c(0)) for all subsequent bytes until ATN next becomes true. The WD9914 will not use the short bus settling time when it is an active controller.

Table 8. SOURCE HANDSHAKE MNEMONICS

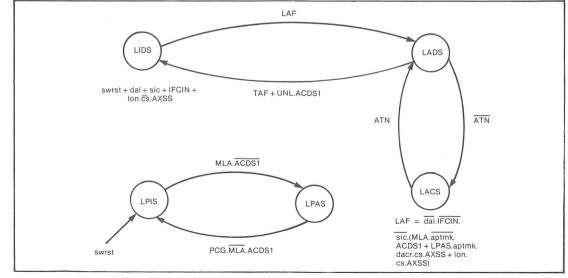
		MESSAGES			STATES
swrst	=	software reset	SIDS	=	source idle state
nbaf	=	new byte available false	SGNS	=	source generate state
wdot	=	write to the data out register	SDYS	=	source delay state
stdl	=	enable short bus settling time	SERS	=	source error state
vstdl	=	enable very short bus settling time	STRS	=	source transfer state
ATN	=	attention	SHFS	=	source holdoff state
RFD	=	ready for data	VSTS	=	very short bus settling time state
DAC	=	data accepted	TACS	=	talker active state (talker function)
^t c(0)	=	clock cycle time	CACS	=	controller active state (controller function)
			SPAS	=	serial poll active state (talker function)
			AXSS	=	auxiliary command strobe state (auxili- ary command register)

Table 9. SOURCE HANDSHAKE MESSAGE OUTPUTS

STATE	REMOTE MESSAGES SENT DAV	OTHER ACTIONS
SIDS SGNS	(F) F	BO interrupt and ACCRQ set true if SHFS is false and SPAS is not true
SDYS SERS STRS	F F T	ERR interrupt set true

TALKER AND LISTENER FUNCTIONS

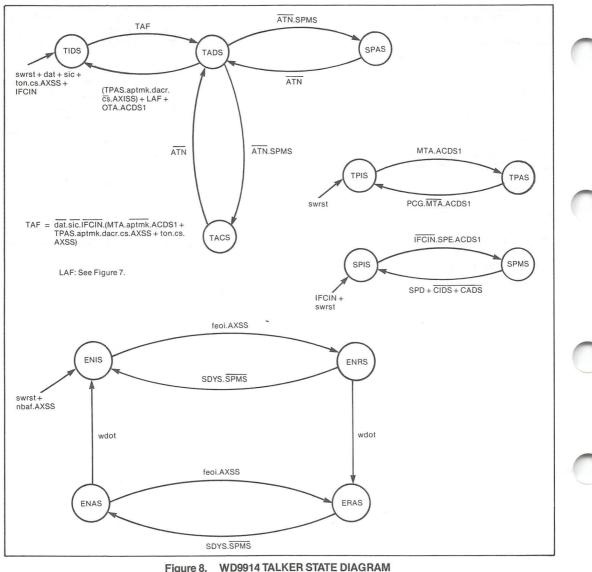
Figures 7 and 8 show the WD9914 listener and talker state diagrams, which serve the purpose of the listener and talker or extended listener and extended talker functions of IEEE-488, depending on the state of the APT interrupt mask bit.


The WD9914 does not recognize secondary addresses on-chip and these must be passed through to the host MPU for verification. Secondary addressing is enabled by unmasking the APT interrupt. A secondary address will cause this interrupt if the last primary command received was a primary address of the device: that is, it is in TPAS or LPAS. A DAC holdoff will also occur. The host MPU must respond to the interrupt by reading the secondary from the Command Pass Through register and identifying it as being valid or not valid. The holdoff may then be released with a "dacr" auxiliary command, the sense of the cs bit being used to indicate a valid (cs = 1) or not valid (cs = 0) secondary. If a valid secondary address is indicated, then the WD9914 will enter TADS or LADS, depending on whether it is in TPAS or LPAS.

The "lon" and "ton" auxiliary commands together with

the clear/set bit (cs) have a direct influence on the appropriate state diagrams. Therefore, although they appear as ordinary clear/set auxiliary commands, they can be effectively cleared by other bus events. For example, if a WD9914 addresses itself as a listener via the "lon" command, it may be returned to LIDS by an UNL command from the bus at a later time.

The "lon" and "ton" auxiliary commands are used to implement two features of IEEE-488. First, talk only and listen only are used in situations where there is no active controller on the bus. Note that the "lon" and "ton" commands are linked with these features to indicate to the user that these commands are not enabled by CAS, as are "Itn" and "lun" of IEEE-488.


Second, the "lon" and "ton" auxiliary commands are used by an active controller to address itself. IEEE-488 provides for a controller to address itself to listen via the "ltn" and "lun" message, but there is no corresponding message for the talker. Hence, when a controller addresses itself to talk via "ton," it must send its talk address over the bus and; similarly, if it sends another talk address over the bus then it must unaddress itself by writing "ton" false.

When the WD9914 enters SPAS, the contents of the Serial Poll register are sampled, and presented on DIO(8-1). These will remain unchanged until SPAS is exited. The source handshake will, however, send this status byte as many times as the controller will accept it.

The internal IFC signal of the WD9914 (IFCIN) is suppressed when the device itself is sending IFC in order to simplify implementation of the controller function. Therefore, the send interface clear (sic) auxiliary command is included with IFCIN to return the talker and listener functions to their idle states and allow a system controller to clear its own interface. A separate state diagram is included to control the sending of the END message of IEEE-488. If the "feoi" auxiliary command is written followed by loading a byte into the Data Out register, the WD9914 will enter ERAS, and the EOI line will be asserted as 'DIO(8-1)' begin to change. The function will enter ENAS as soon as the source handshake begins to send this byte, and EOI will be released when the Data Out register is next loaded. If it is desired to send EOI true with the next byte as well, then "feoi" may be written before the Data Out register returns the device to ERAS.

20

Table 10. TALKER AND LISTENER MNEMONICS

		MESSAGES			STATES
swrst	=	software reset	LIDS	=	listener idle state
dal	=	disable listener	LADS	=	listener addressed state
dat	=	disable talker	LACS	=	listener active state
sic	=	send interface clear	LPIS	=	listener primary idle state
lon	=	listen only	LPAS	=	listener primary addressed state
ton	=	talk only	TIDS	=	talker idle state
c/s	=	clear/set bit of the auxiliary command register	TADS	=	talker addressed state
dacr	=	release 'DAC' holdoff	TACS	=	talker active state
aptmk	=	address pass through interrupt mask	SPAS	=	serial poll active state
nbaf	=	new byte available false	SPIS	=	serial poll idle state
feoi	=	force 'EOI'	SPMS	=	serial poll mode state
wdot	=	write to the Data Out register	TPIS	=	talker primary idle state
ATN	=	attention	TPAS	=	talker primary addressed state
IFCIN	=	internal interface clear message (a debounced signal, suppressed by 'sic')	ENIS	=	end idle state
EOI	=	end or identify	ENRS	=	end ready state
PCG	=	primary command group	ERAS	=	end ready and active state
MLA	=	my listen address	ENAS	=	end active state
MTA	=	my talk address	SDYS	=	source delay state (source handshake)
OTA	=	other talk address	CIDS	=	controller idle state (controller function)
SPE	=	serial poll enable	CADS	=	controller addressed state (controller function)
SPD	=	serial poll disable	ACDS1	=	accept data state 1 (acceptor hand- shake)
UNL	=	unlisten	AXSS	=	auxiliary command strobe state (auxili- ary command register)
PCG	=	primary command group			

Table 11. TALKER FUNCTION MESSAGE OUTPUTS

		REMOTE MES	SAGES SENT	OTHER ACTIONS
STATE	QUALIFIER	RQS	EOI	DIO(8-1)
TIDS		(F)	(F)	(NUL)
TADS		(F)	(F)	(NUL)
TACS	ENIS.ENRS	(F)	F	DATA OUT REG
TACS	ENAS.ERAS	(F)	т	DATA OUT REG
SPAS	NPRS.SRQS	F	F	SERIAL POLL REG
SPAS	APRS1.APRS2	Т	F	SERIAL POLL REG

SERVICE REQUEST FUNCTION

Figure 9 shows the state diagram for the WD9914 service request function. The device has two means of implementing the request service (rsv) local message of IEEE-488: the first, "rsv1," is bit 7 of the Serial Poll

register; the second is the auxiliary command "rsv2." These are simply ORed together to provide an input to the service request function; and, in any particular application, only one would normally be used, the other being left in its hardware reset state. The affirmative poll response state (APRS) of IEEE-488 is split into two states on the WD9914 for the following reason: Consider the case where a device has requested service, has been serial polled. and then wishes to request service again. The host MPU must clear the "rsv" message and then set it true again. Now suppose this temporary false condition happens within one occurrence of SPAS. If the service request function has been implemented exactly as per IEEE-488, it will not be recognized, and SRQ will not be asserted a second time. Therefore, "rsv" may only be cleared when the device is known not to be in SPAS, which can only happen if it is cleared as a consequence of some pre-arranged action of the controller. This action would normally be a part of the service routine executed by the controller as a response to the request for service. For example, if service was requested by an instrument which had some data to send for processing or to a printing device, then "rsv" could be cleared when it is addressed to talk and send its data over the bus.

For many applications, the fact that the device has been serial polled after requesting service is considered sufficient response from the controller. The "rsv" local message, therefore, simply becomes a request for the controller to read its serial poll status byte. It is then desirable to be able to clear and reassert "rsv" at any time after the serial poll status byte has been polled and the SPAS interrupt set. The WD9914 is able to record a false transition of "rsv1" or "rsv2" by moving from APRS1 to APRS2 even if the device is in SPAS. This makes the above approach to serial polling possible.

To further support this approach, the "rsv2" auxiliary command is automatically cleared when the serial poll status byte is polled, ensuring that "rsv2" is cleared before a second serial poll can occur. If this were not the case, then the same status byte might be polled twice by the controller with the RQS bit true, which may indicate that two reasons for requiring service have arisen.

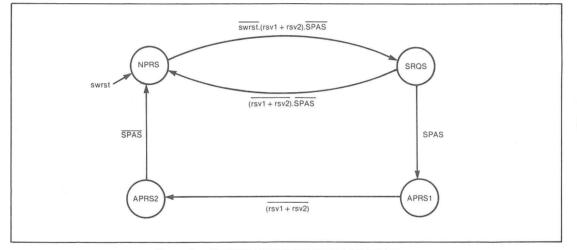
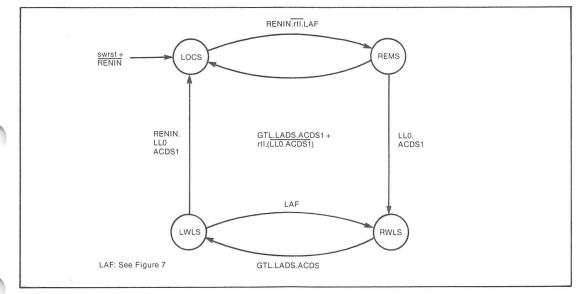


Figure 9. SERVICE REQUEST STATE DIAGRAM

The WD9914 will only send one serial poll status byte during each active period of SPAS. However, it will send this status byte as many times as the controller is prepared to accept it. Therefore, the controller should only read the status byte once per serial poll; otherwise, each time a status byte is sent with the RQS message true, the SPAS interrupt will be generated and "rsv2" will be cleared.

		MESSAGES			STATES
swrst	=	software reset	NPRS	=	negative poll response state
srv1	=	request service 1 (bit 7 of serial poll register)	SRQS	=	service request state
rsv2	=	request service 2 (auxiliary command register)			affirmative poll state 1
			APRS2	=	affirmative poll state 2
			SPAS	=	serial poll active state (talker function)

Harris Hits and a file the to


Table 13. SERVICE REQUEST MESSAGE OUTPUTS

STATE	REMOTE MESSAGES SENT SRQ	OTHER ACTIONS
NPRS	(F)	
SRQS	т	
APRS1	(F)	 — "rsv2" cleared if in SPAS and STRS — SPAS interrupt set if in SPAS when STRS is exited
APRS2	(F)	— same as APRS1

REMOTE/LOCAL FUNCTION

The WD9914 remote local state diagram is shown in Figure 10. If differs little from that of IEEE-488.

The complete listener function (LAF) is used to effect the transition from LOCS to REMS or from LWLS to RWLS. This means that if the APT interrupt is masked, the device will enter one of the remote states in response to its listen address, but if secondary addressing is enabled, then this will not happen until 'dacr' is written with c/s true in response to a valid secondary address. In addition, the transition to one of the remote states will occur if 'lon' is used to address the device to listen.

Table 14.	REMOTE/LOCAL	MNEMONICS
101010 1 11		

	MESSAGES	STATES		
swrst =	software reset	LOCS	=	local state
rtl =	return to local	REMS	=	remote state
RENIN =	internal remote enable message (debounced)	RWLS	=	remote with lockout state
GTL =	go to local	LWLS	=	local with lockout state
LLO =	local lockout	LADS	=	listener addressed state (listener function)
		ACDS1	=	accept data state 1 (acceptor hand- shake)

PARALLEL POLL FUNCTION

The parallel poll function of the WD9914 only nominally supports logically-configured parallel poll. With a suitable software package, remotely-configured parallel poll may also be easily implemented. The state diagram is shown in Figure 11.

When the EOI and ATN lines become true simultaneously (the Identify message), the contents of the Parallel Poll register are output to DIO(8-1). If parallel poll is to be used in a particular bus environment, then the Pull-Up Enable (PE) input of the SN75160 must be held low so that the DIO(8-1) are driven by open collector buffers. Parallel Poll, occurring when the Parallel Poll register is in the hardware reset condition of all zeros, will result in none or DIO(8-1) being pulled low. This corresponds to the parallel poll idle state (PPIS). If it is desired to participate in a parallel poll, then the bit corresponding to the desired parallel poll response is set true. This implements the parallel poll standby state (PPSS), and, when the Identify message becomes true, the appropriate line of DIO(8-1) is pulled low. This is equivalent to the parallel poll active state (PPAS). Only one bit of the Parallel Poll register should be set true at once.

Remotely Configured Parallel Poll

The parallel poll configure command (PPC) is treated by the WD9914 as an unrecognized addressed command. It is passed through when the WD9914 is in LADS. If an instrument is to be remotely configured for parallel poll, then the pass through next secondary (pts) auxiliary command should be written before releasing the DAC holdoff. This will cause the next command received to also set a UNC interrupt if it is a secondary command. The secondary command will be either the parallel poll enable command (PPE) or the parallel poll disable command (PPD) and should be read from the Command Pass Through register and identified. If it is the PPE command, then the attendant bits (S, P1, P2, P3) should be extracted and stored by the host MPU. The S bit should then be matched against the individual status of the instrument (represented by 'ist'); and if they are the same, the bit corresponding to the parallel poll response, specified by P1, P2, P3, should be set true in the Parallel Poll register. If this is not the case, then the Parallel Poll register should be cleared if it is not already clear. After this, each time the individual status of the device changes, the 'ist' should again be matched against the S bit and the Parallel Poll register updated accordingly until PPD or PPU is received.

If a PPD command is passed through after the "pts" feature has been written, the Parallel Poll register should be cleared before the DAC holdoff is released. The PPC command that precedes PPD is an address command; it is a means of eliminating individual members of a parallel poll. The parallel unconfigure command is treated by the WD9914 as an unrecognized universal command. When it is passed through, the host MPU should clear its Parallel Poll register before releasing the DAC holdoff. This command will clear all members of a parallel poll.

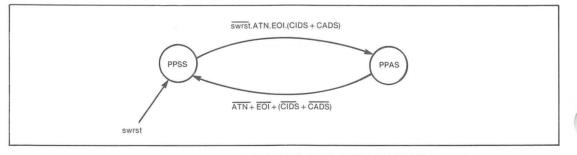


Figure 11. WD9914 PARALLEL POLL STATE DIAGRAM

Table 15. PARALLEL POLL MNEMONICS	Table 15.	PARALLEL	POLL	MNEMONICS
-----------------------------------	-----------	----------	------	------------------

		MESSAGES	STATES			
swrst	=	software reset	PPSS	=	parallel poll standby state	
ATN	=	attention	PPAS	=	parallel poll active state	
EOI	=	end or identify	CIDS	=	controller idle state (controller function)	
			CADS	=	controller addressed state (controlle function)	

Table 16. PARALLEL POLL MESSAGE OUTPUTS

	REMOTE MESSAGES SENT	
STATE	DIO(8-1)	OTHER ACTIONS
PPSS	(NUL)	
PPSS	PARALLEL POLL REG*	

*If there is a true bit in the Parallel Poll register, it must be sent active; any false bit must be sent passive.

CONTROLLER FUNCTION

The controller function of the WD9914 is greatly simplified compared with that of IEEE-488. It relies heavily on software support but, with suitable software, it enables all subsets of the controller function to be implemented. With this approach, the controller logic is reduced to a small proportion of the chip area, which means that the device may be economically used in situations where a talker/listener only is required.

Figure 12 shows the controller function state diagram. With suitable software, it will perform the full controller function, as described in the IEEE-488A 1980 supplement to the IEEE-488 1978. It therefore includes the additional state CSHS, which allows time for DAV to be recognized false by all devices on the bus before ATN is asserted. The "tcs" local message is implemented by an immediate execute auxiliary command. The state CWAS therefore is added to record the occurrence of this command until the acceptor handshake enters ANRS and the device can enter CSHS. The "tca" auxiliary command also causes entry into CSHS although IEEE-488A 1980 allows it to move directly from CSBS to CSWS. This is done for convenience of implementation and results in the "tca" auxiliary command taking an extra 1.6 microseconds to assert ATN.

The delay between CSWS and CAWS is slightly less than specified in IEEE-488A 1980 but the total time taken in moving from CSWS to CACS is still greater than the specified minimum.

The Controller Parallel Poll State (CPPS) is not included on the WD9914. To conduct a parallel poll, a WD9914 based controller must set the "rpp" clear/set auxiliary command true when it is in CACS, moving it to CPWS which sends EOI true. The host MPU must then wait two microseconds before reading back the parallel poll responses via the Command Pass Through register. The "rpp" auxiliary command can then be cleared, EOI will go false, and the parallel poll is complete. The host MPU will receive BO interrupt as soon as the WD9914 reenters CACS and the source handshake becomes active.

Controller Self Addressing

The acceptor handshake does not operate when the controller is active. This means commands being sent are not monitored, and special precautions are required as a consequence of this when addressing devices and when passing control.

When the controller is active, it uses "ton" or "lon" to address and unaddress itself. IEEE-488 provides for the controller to locally address itself to listen, but there is no corresponding local message for the talker. The WD9914 should always accompany a "ton" auxiliary command with cs true with its own talk address or an UNT command sent over the bus. Similiarly, if the WD9914 sends the talk address of another device over the bus, it should ensure that it is in TIDS by writing the "ton" auxiliary command false.

Passing Control

As Figure 12 shows, the controller transfer state (CTRS) of IEEE-488 is not present, and all transitions associated with the TCT command have been removed. Instead, two immediate execute auxiliary commands are included. Request control (rqc) will cause a transition from CIDS to CADS, and the release control command (rlc) will return the function to CIDS. The TCT command is treated similarly to an unrecognized addressed command, but will cause a UNC interrupt if the device is in TADS.

Figure 13 is a representation of the sequence of events involved in passing control from one WD9914 based device to another. The device passing control must initially ensure that it is not in TADS; then it should send out the talk address of the device to receive control. The receiving device will enter TADS, and after any DAC holdoff has been released, the host MPU of the device passing control will set a BO interrupt indicating that it may then send the TCT command. The TCT command will cause a UNC interrupt to the host MPU of the receiving device, and also a DAC holdoff will occur. The host MPU of the receiving device must examine its Command Pass Through register, and upon identifying TCT, should write the auxiliary command "rqc" to put its WD9914 into CADS. The receiving device may then release DAC with a "dacr" auxiliary command causing another BO interrupt at the device passing control. This indicates that the "ric" auxiliary command may then be used by the host MPU of the device passing control to return its WD9914 to CIDS and allowing ATN to go false. The receiving device then enters CACS, asserts ATN, and its host MPU gets a BO interurpt as the source handshake becomes active. The passing of control is complete.

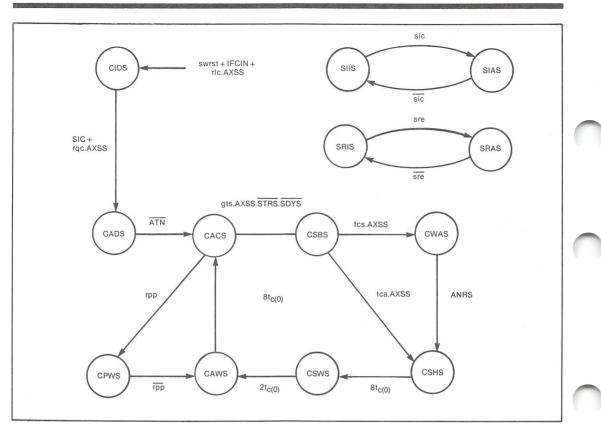


Figure 12. WD9914 CONTROLLER STATE DIAGRAMS

Table 17. CONTROLLER FUNCTION MNEMONICS

		MESSAGES			STATES
swrst	=	software reset	CIDS	=	controller idle state
sic	=	send interface clear	CADS	=	controller addressed state
sre	=	send remote enable	CACS	=	controller active state
rqc	=	request control	CSBS	=	controller standby state
rlc	=	release control	CSHS	=	controller standby hold state
gts	=	go to standby	CSWS	=	controller synchronous wait state
tcs	=	take control synchronously	CAWS	=	controller active wait state
tca	=	take control asynchronously	CPWS	=	controller parallel poll wait state
rpp	=	request parallel poll	ANRS	=	acceptor not ready state (acceptor handshake)
IFCIN	=	internal interface clear message (a debounced signal which is suppressed	001/0		
		if "sic" is true)	SDYS	=	source delay state (source handshake)
ATN	=	attention	STRS	=	source transfer state (source hand- shake)
^t c(0)	=	clock cycle time	AXSS	=	auxiliary command strobe state (auxili- ary command register)
			LWAS	=	controller wait for ANRS state

	REMOTE MESSAGE SENT		REMOTE MESSAGE SENT					
STATE	ATN EOI D10(8-1)		D10(8-1)	OTHER ACTIONS				
CIDS	(F)	(F)	(NUL)					
CADS	(F)	(F)	(NUL)					
CACS	Т	F	DATA OUT REG	Data Out reg. may contain any of the commands in Table 19				
CSBS	F	(F)	(NUL)					
CWAS	F	(F)	(NUL)					
CSHS	F	(F)	(NUL)					
CSWS	Т	F	(NUL)					
CAWS	Т	F	(NUL)					
CPWS	Т	Т	(NUL)	DIO(8-1) may be read via the Command Pass Through register				

Table 18. CONTROLLER FUNCTION MESSAGE OUTPUTS

STATE	REMOTE MESSAGES SENT	OTHER ACTIONS
SIIS* SIIS	(F) F	Internal interface. Clear message IF- CIN
SIAS	Т	is held false

×	REMOTE MESSAGES SENT	
STATE	REN	OTHER ACTIONS
SRIS*	(F)	
SRIS	F	
SRAS	Т	

*Buffers not configured for a system controller; otherwise, buffers are configured for system controller.

The REN and IFC outputs of the WD9914 are controlled by the auxiliary commands "sre" and "sic." These should never be used by the host MPU of a device unless it is the system controller. As may be seen from Figure 14, the REN and IFC outputs of the WD9914 are open drains with internal pull-ups. This means that the outputs are capable of driving the inputs of the buffers if the device is a system controller. If not, the buffers will drive into the REN and IFC pins and override the pull-ups. Hence, no direction control is required.

The false transition of REN and the true transition of

IFC are both debounced to prevent noise on these lines from causing permanent state changes on the WD9914. In addition, the internal interface clear signal (IFCIN) is held false if the WD9914 is sending IFC. Figure 12 shows the reason for this. If the device is not a system controller, then the occurrence of IFC will return the controller function to CIDS. If, however, the device is a system controller when it asserts IFC and is in CIDS, the "sic" auxiliary command will cause it to enter CADS. As IFCIN is suppressed, it will not be forced back into CIDS, and there will be no conflict.

System Controller

The WD9914 has no on-chip means of determining whether or not it is the system controller. Instead, this is determined by the software and by the configuration of the buffers to the IEEE-488 bus.

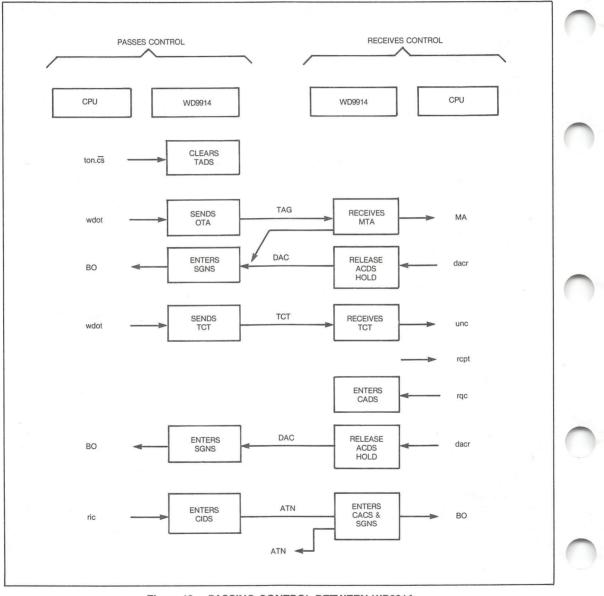


Figure 13. PASSING CONTROL BETWEEN WD9914

Table 19. MULTILINE INTERFACE MESSAGES

COMMAND	SYMBOL	DIO 8 - 1	CLASS	INTERRUPT (1, 2)	DAC (3) HOLDOFF	NOTE
Addressed Command						
Group	ACG	000XXXX	AC	_		
Device Clear	DCL	X0010100	UC	DCAS	Yes	
Group Execute Trigger	GET	X0001000	AC	GET	Yes	
Go To Local	GTL	X000001	AC	RLC	No	14
Listen Address Group	LAG	X01XXXXX	AD	-	—	
Local Lockout	LLO	X0010001	UC	None	No	
My Listen Address	MLA	X01AAAAA	AD	MA,MAC,RLC	MA Only	4,14
My Talk Address	MTA	X10AAAAA	AD	MA,MAC	MA Only	4
My Secondary Address	MSA	X11SSSSS	SE	APT	Yes	5,6
Other Secondary Address	OSA	SCG.MSA-	SE	APT	Yes	6,7
Other Talk Address	OTA	TAG.MTA-	AD	MAC	No	
Primary Command Group	PCG	ACG + UCG + LAG + TAG	-	_		
Parallel Poll Configure	PPC	X0000101	AC	UNC	Yes	8
Parallel Poll Enable	PPE	X110SPPP	SE	UNC	Yes	9,10
Parallel Poll Disable	PPD	X111DDDD	SE	UNC	Yes	9,11
Parallel Poll Unconfigure	PPU	X0010101	UC	UNC	Yes	12
Secondary Command Group	SCG	X11XXXXX	SE	_	-	
Selected Device Clear	SDC	X0000100	AC	DCAS	Yes	
Serial Poll Disable	SPD	X0011001	UC	None	No	
Serial Poll Enable	SPE	X0011000	UC	None	No	
Take Control	TCT	X0001001	AC	UNC	Yes	13
Talk Address Group	TAG	X10XXXXX	AD	_	_	
Unlisten	UNL	X0111111	AD	MAC	No	
Untalk	UNT	X1011111	AD		_	
Universal Command Group	UCG	X001XXXX	UC	None	No	

Classes: UC - universal command

- AC addressed command
- AD address
- SE secondary command

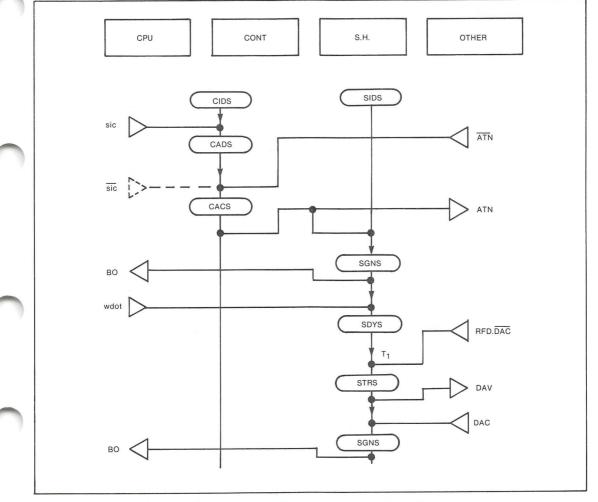
Symbols: 0 — logical zero (high level on GPIB)

- 1 logical one (low level on GPIB)
- x don't care (received message)

NOTES:

- Interrupts listed are as a direct consequence of the command received. They are set during ACDS1 and will cause the INT pin to be pulled low if unmasked.
- The address commands will only cause their corresponding interrupt if the device is in LADS, with the exception of TCT.

corresponding interrupt is unmasked.


- AAAAA represents the primary address of a device.
- 5. SSSSS represents the secondary address of a device.
- 6. Secondary addresses are handled via address pass through (APT interrupt). The host MPU should respond by writing the "dacr" auxiliary command with cs false.
- 7. If OSA is passed through via the APT interrupt,

the host MPU should respond by writing the "dacr" auxiliary command with cs false.

- 8. PPC is not recognized by the WD9914 and is therefore treated as an unrecognized addressed command.
- PPE and PPD are secondary commands. These may be passed through to the host MPU using the "pts" auxiliary command. When the PPC command is received, the "pts" auxiliary command should be written. PPE or PPD will then cause an APT interrupt.
- 10. SPPP specifies the sense bit, and the desired parallel poll response is a remotely configured parallel poll.

TYPICAL SEQUENCES OF EVENTS FOR THE CONTROLLER

- DDDD specifies don't care bits which must be sent as zeros, but need not be decoded by the host MP of the receiving devices.
- 12. PPU is not recognized by the WD9914 and will cause a UNC interrupt.
- TCT is not recognized directly by the WD9914. It will cause a UNC interrupt when the device is in TADS.
- 14. RLC is set if MLA or GTL causes an appropriate transition in the Remote/Local function.

Figure 15. CONTROLLER TAKING CONTROL

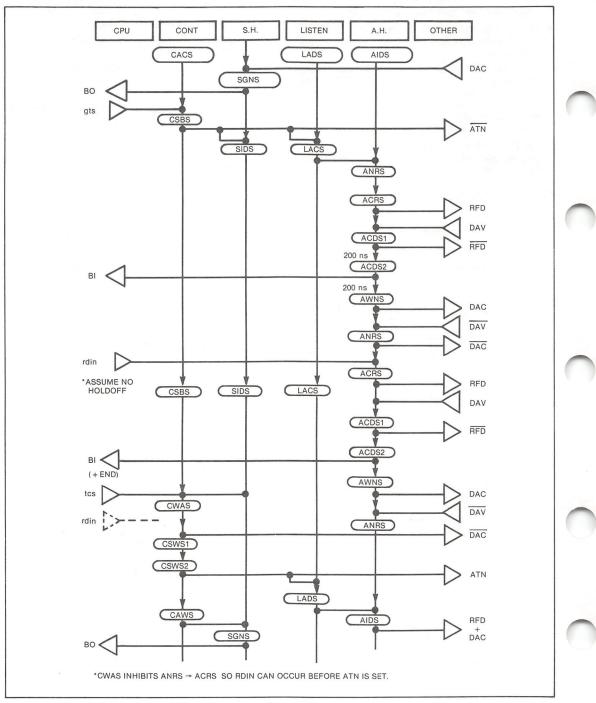


Figure 16. CONTROLLER AS A LISTENER (GOING TO STANDBY)

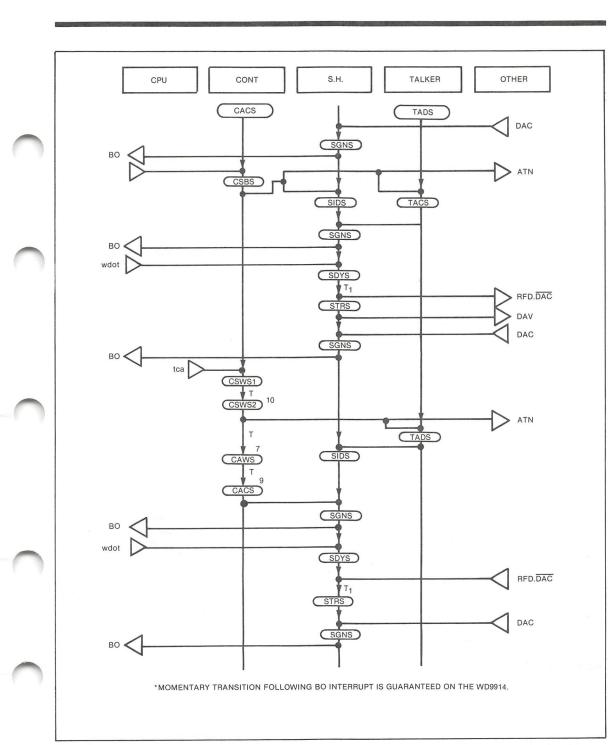


Figure 17. CONTROLLER AS A TALKER (GOING TO A STANDBY)

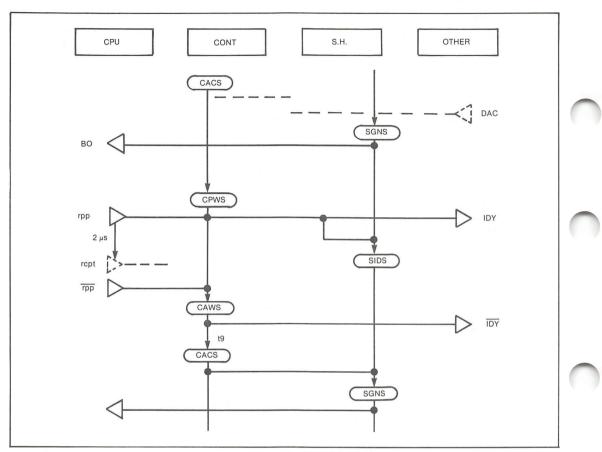


Figure 18. CONTROLLER PARALLEL POLLING

WD9914 ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE (Unless otherwise noted)*

Supply Voltage, VCC (see Note 1) 0.3V to 20V
All Input and Output Voltages – 0.3V to 20V
Continuous Power Dissipation 0.8 W
Operating Free-Air Temperature Range 0°C (32°F)
to 70°C (158°F)
Storage Temperature Range55°C (-67°F) to
150°C (302°F)
RECOMMENDED ODEDATING CONDITIONS

RECOMMENDED OPERATING CONDITIONS

*Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolutemaximum-rated conditions for extended periods may affect device reliability.

NOTE 1:

Under absolute maximum ratings, voltage values are with respect to VSS.

	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.75	5	5.25	V
Supply voltage, VSS		0		V
High-level input voltage, VIH	2		VCC+1	V
Low-level input voltage, VIL	VSS-0.3		0.8	V
Operating free-air temperature, TA	0		158	°F
			70	°C

ELECTRICAL CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
Vон	High-level output voltage Except REN,IFC,INT REN,IFC only	$I_{OH} = -400 \mu A$ $I_{OH} = -100 \mu A$	2.4		V _{CC} V _{CC}	V
VOL	Low-level output voltage	IOL = 2 mA	VSS		0.4	V
lj	Input current (any input)	$V_I = 2 V \text{ to } V_{CC}$			± 10	μΑ
ICC	VCC supply current				150	mA
Ci	Input capacitance (any input)	f = 1 MHz, unmeasured pins at 0 V			15	pF

+ All typical values are at $T_A = 25^{\circ}C$ (77°F) and nominal voltage.

TIMING CHARACTERISTICS AND REQUIREMENTS

Timing characteristics and requirements are given in the following and relevant timing diagrams are shown in Figure 10 through Figure 27.

Clock and Host Interface Timing Requirements Over Full Range of Operating Conditions

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
^t c(0)	Clock cycle time	200		2000	nsec
^t w(0H)	Clock high pulse width	100		1955	nsec
^t w(0L)	Clock low pulse width	45			nsec
tsu(AD)	Address setup time	0			nsec
tsu(DBIN)	DBIN setup time	0			nsec
tsu(CE)	CE setup time	150			nsec
t _{su(WE)}	WE setup time	0			nsec
tw(WE)	WE low pulse width	80			nsec
tsu(DA)	Data setup time	60			nsec
th(DA)	Data hold time	0			nsec
^t h(AD)	Address hold time	0			nsec
th(DBIN)	DBIN hold time	0			nsec
th(CE)	CE hold time	80			nsec
tsu(GR)	ACCGR setup time	100			nsec
^t h(GR)	ACCGR hold time	80			nsec

Host Interface Timing Characteristics Over Full Range of Operating Conditions

SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNIT
^t a(CE)	Access time from CE			150	nsec
ta(DBIN)	Access time from DBIN			150	nsec
tsu(AD)	Address setup time to \overline{CE}	0			nsec
tz(DBIN)	Hi-Z time from DBIN		50	100	nsec
^t z(CE)	Hi-Z time from CE		50	100	nsec
^t a(GR)	Access time from ACCGR			150	nsec
^t z(GR)	Hi-Z time from ACCGR		50	100	nsec
^t d(GR/RQ)	Delay of ACCRQ high from ACCGR			100	nsec

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
^t d1	Delay of DAV true from end of write operation to data out register	Normal T ₁ (see Note 2) Short T ₁ (see Note 2) Very short T ₁ (see Note 2)	12(0)↑ 8(0)↑ 4(0)↑	12(0)↑ + 310 8(0)↑ + 310 4(0)↑ + 310	nsec nsec nsec
^t d2	Delay of valid GPIB data lines from end of write cycle			140	nsec
^t d3	Delay of BO interrupt from DAC true	BO interrupt unmasked		300	nsec
td4	Delay of ACCRQ DAC true			300	nsec
td5	Delay of DAV false from DAC true			160	nsec

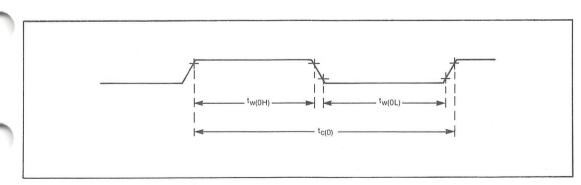
Source Handshake Timing Characteristics Over Full Range of Operating Conditions (see Note 1)

NOTES:

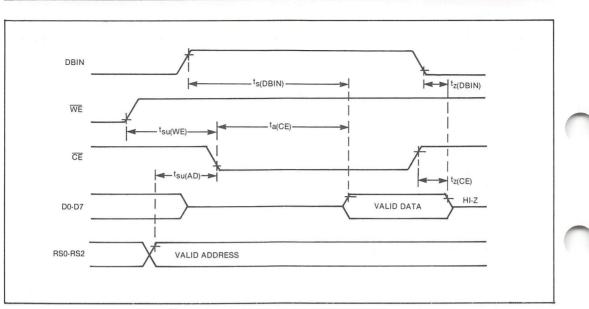
- 1. The timing of the source handshake is the same whether ATN is true or false; i.e., whether the device is in TACS, CACS, or SPAS.
- 2. A very short bus settling time (T1) occurs on the second and subsequent data byte sent when ATN

is false if the "vstd1" feature is set. A slightly longer bus settling time takes place if "std1" is set unless there is a very short bus settling time. In all other instances, a normal bus settling time occurs.

Acceptor Handshake Timing Characteristics Over Full Range of Operating Conditions


SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
^t d6	Delay of BI interrupt from DAV true	BI interrupt unmarked ATN = false device is in LACS	2(0)↑	2(0)↑+415	nsec
td7	Delay of ACCRQ from DAV true	ATN = false device is in LACS	2(0)↑	2(0)†+290	nsec
td8	Delay of DNAC false from DAV true	ATN = false device is in LACS	3(0)↑	3(0)↑ + 445	nsec
td9	Delay of NRFD false from end of read operation of Data In register	ATN = false device is in LACS		220	nsec
^t d10	Delay of interface message interrupt from DAV true	ATN = true device not in CACS all interface message interrupts (except UNO)	2(0)↑	2(0)↑ + 415	nsec
		UNO interrupt only	5(0)↑	5(0)↑+415	nsec
^t d11	Delay of NDAC false from DAV true	ATN = true device not in CACS no DAC holdoff	7(0)↑	7(0)↑+415	nsec
^t d12	Delay of NDAC false from end of write operation			230	nsec
^t d13	Delay of NRFD false from DAV false	ATN = true device not in CACS		180	nsec

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
^t d14	Delay of NDAC true from ATN true	Device is not in CACS		195	nsec
^t d15	Delay of TE high from EOI true	Device is not in CACS		125	nsec
^t d16	Delay of valid data from EOI true	Device is not in CACS		140	nsec
^t d17	Delay of TE low from EOI false	Device is not in CACS		125	nsec
^t d18	Delay of NRFD true from ATN false	Device is in LADS/LACS		140	nsec
^t d19	Response time to IFC		16t _{c(0)}	30t _{C(0)}	nsec


ATN, EOI, and IFC Timing Characteristics Over Full Range of Operating Conditions

Controller Timing Characteristics Over Full Range of Operating Conditions

	SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT	
	td20	Delay of ATN true from end of t _{Ca} aux command	а	8t _{c(0)}	10(0)↑+220	nsec	
	^t d21	Delay of BO interrupt from end of t _{Ca} aux command		18t _{c(0)}	22(0)↑+415	nsec	
	td22	Delay of ATN true from end of t _{CS} aux command	BO unmasked device is in ANRS	8tc(0)	10(0)↑+220	nsec	
	td23	Delay of BO interrupt from end of t_{CS} aux command	BO unmasked device is in ANRS	18t _{c(0)}	22(0)↑+415	nsec	
	td24	Delay of EOI true from r _{pp} aux command set			230	nsec	
	td25	Delay of EOI false from rpp aux command cleared			230	nsec	
	^t d26	Delay of EOI from r _{pp} aux command cleared	BO unmasked	8tc(0)	10(0)↑ + 415	nsec	
	^t d27	Delay of ATN false from sts aux command	Device is not in SDYS or STRS		210	nsec	

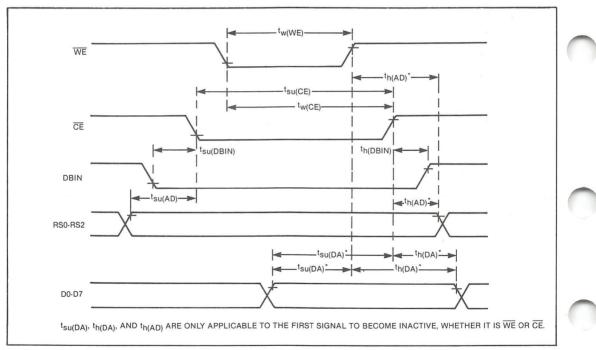
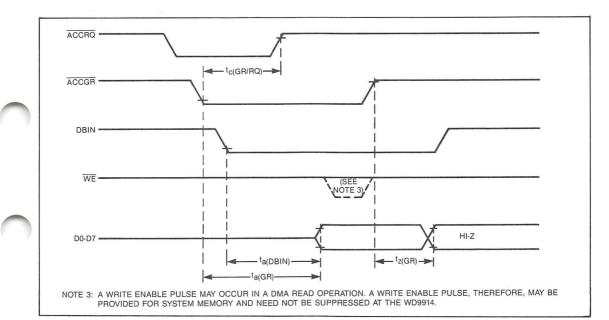



Figure 21. WD9914 WRITE CYCLE TIMING

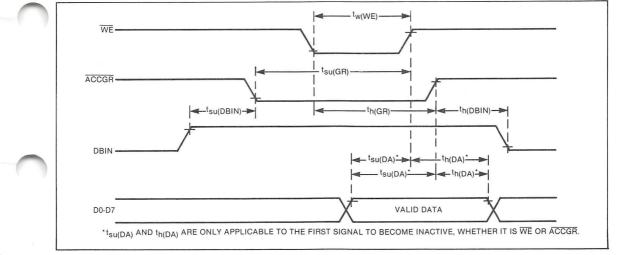
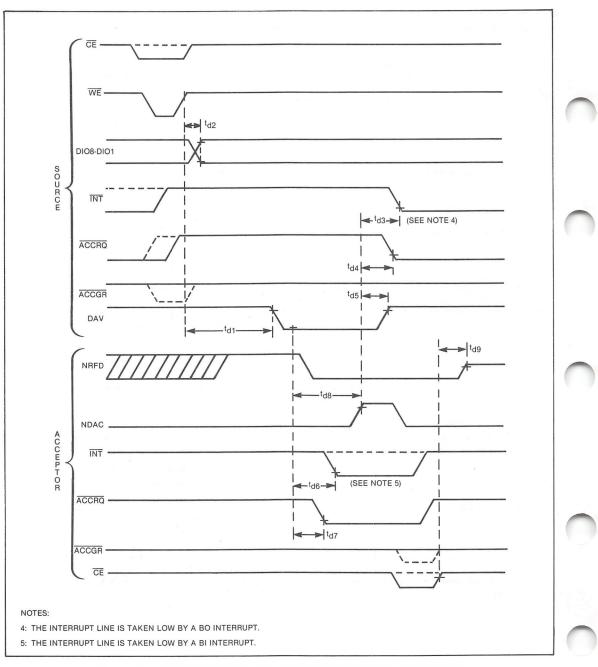



Figure 23. WD9914 DMA WRITE OPERATION

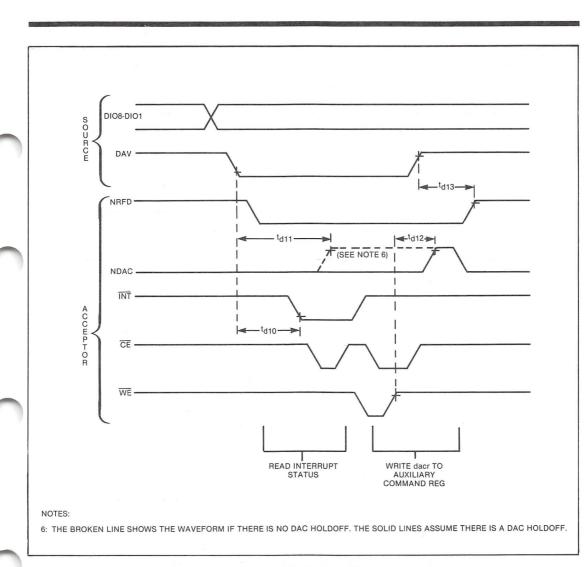
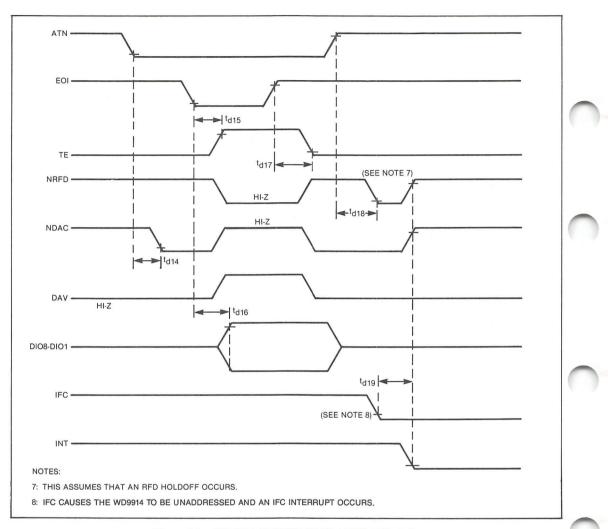
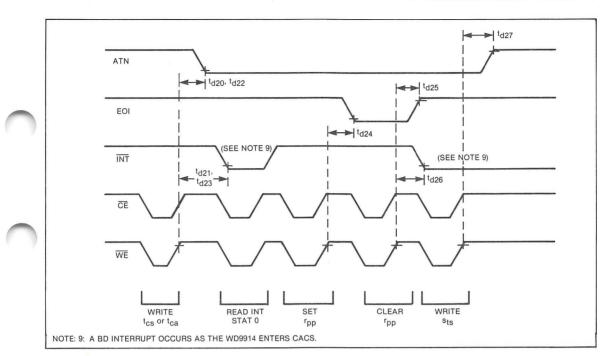
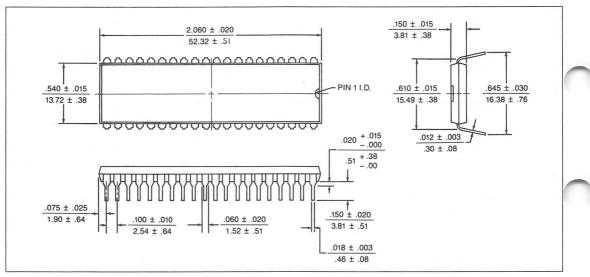
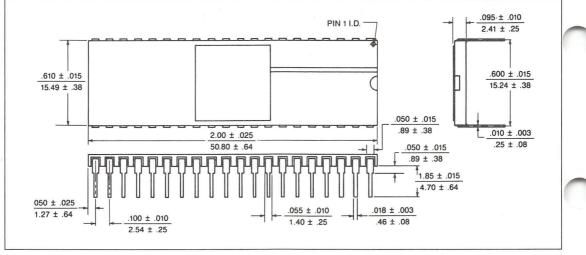


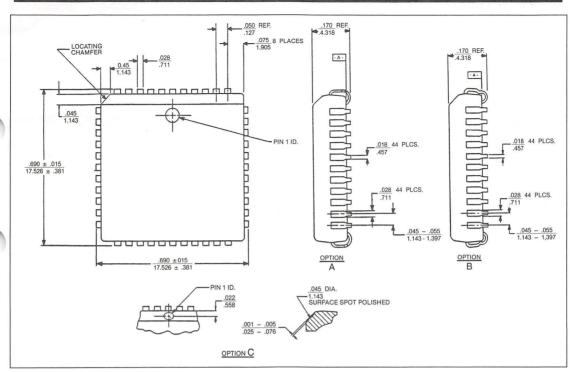
Figure 25. WD9914 ACCEPTOR HANDSHAKE TIMING "ATN" TRUE


Figure 26. WD9914 RESPONSE TO 'ATN' AND 'EOI'



PACKAGE DIAGRAMS



40 LEAD CERAMIC "AL"

44

44 LEAD PLASTIC "JM"

ORDERING INFORMATION:

WD9914 AL/PL/JM

- AL = Ceramic Side Braze, 40-Lead
- PL = Plastic (Encap), 40-Lead
- JM = Plastic Chip Carrier-Leaded, 44-Lead

Please contact your local Western Digital Sales Representative or Call Toll Free (800) 847-6181 for package availability and price information.

COPYRIGHT © 1988 WESTERN DIGITAL CORPORATION ALL RIGHTS RESERVED


This document is protected by copyright, and contains information proprietary to Western Digital Corporation. Any copying, adaptation, distribution, public performance, or public display of this document without the expressed written consent of Western Digital Corporation is strictly prohibited. The receipt or possession of this document does not convey any rights to produce or distribute its contents, or to manufacture, use or sell anything that it may describe, in whole or in part, without the specific written consent of Western Digital Corporation.

Information furnished by Western Digital Corporation is believed to be accurate and reliable. However, no responsibility is assumed by Western Digital Corporation for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Western Digital Corporation. Western Digital Corporation reserves the right to change specifications at anytime without notice.

WESTERN DIGITAL

Western Digital 2445 McCabe Way Irvine, California 92714 (714) 474-2033 (714) 863-0102 FAX 714-660-4909 TLX 910-595-1139 For Information on WD Communications Products Call: 1-800-NET LEADER (1-800-638-5323) or (714) 474-2033, Ext. 4629 for General Information, or Ext. 4900 for Technical Support.

WD1240C 1/88 1M 79-000155-000

			1	1 5
Thesis				
				A) - FF
1				-
All the second of the				
				1
1/ 11 Car				
A state for the second				
				and the
				- Anda
and the second second				
and the				
		.10		
Western Digital 2445 McCabe Way	-			
		AND THE ADD		
Irvine, California 92714				
(714) 474-2033 (714) 863-0102		10 m		E have
FAX 714-660-4909 TLX 910-593		and the second second		
For Information on WD Commun				
For General Information Call (714) 474-2033, Ext. 4629, or For	r Technical Su	1pport Call (714) 474-2033,	Ext. 4900
WD1240C 1/88 1M				
79-000155-000				
(命) 1				